
Physically Computing Physical Computing: Creative Tools 
for Building with Physical Materials and Computation 

 

Michael Gubbels1 and Jon E. Froehlich2 

Makeability Lab | Human-Computer Interaction Lab (HCIL) 
1College of Information Studies, 2Department of Computer Science 

University of Maryland, College Park, MD 
{mgubbels, jonf}@umd.edu  

ABSTRACT 
Physical computing refers to the activity of creating physical 
artifacts and giving them behaviors through a combination of 
building with physical materials, computer programming, and 
circuit building (e.g., connecting sensors and actuators). Physical 
computing is common among artists, engineers, and even children 
(e.g., in workshops). Recent tools such as the Arduino have 
lowered barriers to physical computing by abstracting away 
technical complexity (e.g., interfacing with sensors). However, 
these tools are based on traditional programming paradigms and 
are often extraneous to the artifacts being built rather than an 
integral part. They often tether makers to a computer separate 
from the context of their making. We present Pixel, a tangible 
user interface for physical computing that addresses some of these 
issues. We describe our current prototype, and the gestural and 
visual programming environments for building with it. 

Categories and Subject Descriptors 
D.5.2 [Information Interfaces and Presentation]: User 
Interfaces—user-centered design 

General Terms 
Design, Human Factors, Languages 

Keywords 
Physical computing; tangible user interface; constructionist 
learning; programming language; digital manipulatives 

1. INTRODUCTION 
Physicality plays a central role in shaping human experiences. It 
affects the way we touch, think, manipulate, and move about and 
make sense of the world [8]. Nevertheless, as famously portrayed 
by Igoe et al.’s “finger eye” [10], the human body and the 
physical environment have been long been ignored by computers. 
Recently, however, computing and sensing technologies are 
increasingly built into material things, transforming our artifacts 
and environments to be “smarter” and more aware of themselves 
and their context. With this shift, the role of physicality, context, 
and materiality in computing becomes increasingly important. In 
this paper, we explore a new platform for building physical 
computing experiences that takes advantage of its own physicality 
to enable makers to construct physical artifacts and program their 
behaviors without a conventional computer.  

While recent technologies such as the Arduino [1], Spark Core 
[16] MaKey MaKey [4], and Scratch4Arduino [9, 13] have 
focused on making some aspects of physical computing easier—
specifically programming and connecting electronic peripherals—

these tools require conventional means for programming (e.g., a 
keyboard, mouse, and two-dimensional display), limiting their 
approachability and how they can be used. Moreover, these 
systems rely solely on traditional textual programming languages 
on a computer, which are often physically and even logically 
separate from the artifact being built. By contrast, consider how 
clay can be shaped directly with one’s hands. Recognizing this 
separation, others have begun to explore more direct means of 
computing through tangible user interfaces (TUIs) for 
programming including FlowBlocks [19], AlgoBlock [18], and 
Topobo [14]. However, their tangible manifestations, logical 
constructs, and even syntax are often little more than physical 
manifestations of their counterparts in traditional programming. 

We present Pixel, a modular tangible user interface designed 
specifically for creating and shaping physical computing 
experiences. Pixel is programmable through the performance of 
specific movements with modules, called gestures, and a visual 
programming language. Pixel consists of three parts: (i) a set of 
one or more programmable, cube-shaped modules that together 
form the modular TUI, (ii) a gestural programming language for 
programming the TUI, used to specify high-level system behavior, 
and (iii) a visual programming environment for specifying 
detailed system behaviors. 

Pixel abstracts some of the complexity of embedding behaviors in 
artifacts being built, specifically loops and I/O mappings. Our 
abstractions take inspiration from music sequencers (e.g., 
Monome 64 from monomer.org) and the potter’s wheel. Like 

 
Figure 1: Pixel is a new tangible user interface (TUI) for building 
physical computing experiences. It is comprised of three parts: (i) a 
set of one or more wireless Pixel modules that form the TUI (3 are 
shown above); (ii) a gestural programming language that can link the 
modules and specific high-level system behavior; (iii) a visual, touch-
based programming language for specifying more sophisticated 
behaviors (e.g., conditionals, delays)—shown above on the tablet.  
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these, Pixel provides a “live” looping context into which modules 
can be sequenced using gestures and for programming individual 
modules via the visual environment. This allows makers to shift 
their attention from explicitly specifying loop constructs in an 
abstract syntax to directly sequencing behaviors themselves 
within an existing looping infrastructure, fundamentally changing 
the programming activity. Similar to the way a potter’s wheel 
provides a potter with a platform that continuously rotates to assist 
them in shaping clay, Pixel provides an automatically looping 
structure into which modules can be sequenced using the gestural 
language. This enables makers to focus on composing behaviors 
rather than constructing looping constructs and communication 
between devices. This is analogous to shifting a traditional 
potter’s focus to directly shaping clay on a potting wheel from 
creating the potting wheel or other tools themselves or sculpting 
the clay as if it were made on a potting wheel. We believe this 
approach may lead to a novel paradigm for designing physical 
computing platforms that support a more seamless exploration 
across the boundaries between computation and materiality. These 
ways of programming are described further in Section 4. 

Our early-stage work on Pixel offers three contributions: (i) a 
novel interactive loop paradigm that creates a loop that repeats 
automatically and continuously. This extends the notion of “event 
loops” as expressed by Processing and Arduino, further 
abstracting unnecessary complexity from the user; (ii) a 
physically-based gestural programming language that allows 
makers to sketch high-level program structure between Pixel 
modules and peripherals (e.g., sensors) and to create mappings 
between input and output peripherals; (iii) a visual programming 
language that allows makers to compose sophisticated module 
behaviors via a touch-based tablet environment (e.g., changing the 
speed or direction of a connected motor). 

To illustrate how one might use Pixel, we develop an example 
scenario throughout this paper inspired by Alan Kay’s 
demonstration of Sqeak Etoys [7]. We will show how a child 
named Alanna uses Pixel to build a remote control car (Figure 2).  

2. BACKGROUND AND RELATED WORK 
Researchers have long appreciated that physical materials can 
influence how people understand and engage with the world. In 
1837, Friedrich Fröbel, the inventor of the first kindergarten in 
Germany, famously designed a diverse range of physical objects 
to help children learn and to recognize the common patterns and 
forms found in nature [3]. These material manipulatives served as 
“thinking tools.” They provided a “medium” for children to 
explore abstract concepts such as shape, size, and color. 

In the same way, researchers today appreciate the computer as a 
“computational material” that might support children to discover 
and recognize patterns in the physical world, and to create new 
patterns and behaviors within it. Papert captures this sentiment in 
his assertion, “We can give children unprecedented power to 
invent and carry out exciting projects by providing them with 

access to computers, with a suitably clear and intelligible 
programming language and with peripheral devices capable of 
producing on-line real-time action” (p. 353, [11]). This vision 
appears clearer than ever before with the advent of affordable 
embedded physical computing platforms (e.g., Arduino), systems 
that sense, respond to, and affect the physical world, and even 
have Internet connectivity [e.g., 13]. Yet, certain aspects of 
programming (e.g., syntax [17]) as well as connecting peripherals 
to physical computing platforms (i.e., connecting an 
accelerometer to an embedded computer) present significant 
challenges to children. 

Visual programming languages (VPLs) may simplify some 
aspects of programming. For example, Scratch, which was 
inspired by the way children play and build with Lego, presents 
programming as a collection of blocks visually designed to snap 
together in specific ways to create programs [12]. Scratch has 
been found to successfully introduce children to programming 
concepts in an engaging manner [e.g., 5]. Similarly, Modkit (and 
Scratch4Arduino), a VPL heavily influenced by Scratch, suggests 
that it simplifies some programming tasks on the Arduino [2]. 
However, these VPLs are not well integrated with the task of 
physically connecting peripheral devices (e.g., a DC motor) to 
computing platforms, a crucial part of physical computing. Pixel’s 
VPL provides step-by-step guidance in situ for connecting 
electronic peripherals (such as Adafruit does with tutorials). 

Recent efforts, such as littleBits, Snap Circuits, and, earlier, Lego 
Mindstorms simplify aspects of electronic circuit building for 
children (e.g., [6]). However, these are kits designed for use with 
proprietary components, not common, widely available electronic 
peripherals. Others have simplified interfacing with prototyping 
platforms to ease connecting physical materials and electronics. 
For example, MaKey MaKey allows children to create electronic 
switches and improvise input devices using a wide range of 
conductive materials, including bananas, copper tape, wire, fruit, 
and skin [4]. Pixel takes this further by additionally allowing 
children to (i) connect electronic output devices to modules (in 
addition to inputs) to create conditional behaviors and (ii) create 
parallel sequences of these conditional behaviors.  

While Scratch and MaKey MaKey provide valuable insight for 
how to design a programmable physical computing platform, they 
also have limitations. MaKey MaKey is not easily programmable 
(it uses Arduino) and is not, itself, affected by manipulating the 
materials connected to it. Similarly, manipulating peripherals 
connected to a computer does not affect the programs built in 
Scratch (or vice versa). This means that when makers change 
some aspect of the materials connected to a computer, they cannot 
observe the effect on the program (or vice versa). Sqeak Etoys [7] 
and Topobo [15] hint at ways to directly address this limitation 
through design. These allow programmers to adjust behaviors 
(e.g., rotation) of built objects through direct rotation of virtual 
and physical objects themselves. Pixel allows the user to specify 
new behaviors through gesture and the visual programming 
environment—these behaviors are manifest immediately in the 
modules themselves. 

3. DESIGN AIMS 
We have six design aims drawn from the above literature as well 
as observations from our own experiences as makers and the first 
author’s observations of children while facilitating activities at 
workshops, museum exhibits, and community events. These 
making activities focused on creating artifacts from a wide range 
of physical materials (e.g., paper, copper tape), basic digital 

 
Figure 2: The materials used in our example, in which Alanna builds 
a remote control car with Pixel. 



electronics (e.g., MaKey MaKey, batteries, LEDs, switches), and 
programming (in Scratch and Arduino).  
While impressed by how quickly children understood some facets 
of prototyping tools like MaKey MaKey such as how to connect a 
custom video game controller using alligator clips, we were 
dissatisfied with how these tools constrained children’s making 
activities. For example, because both Scratch4Arduino and the 
MaKey MaKey require physically tethering to a computer, 
children seemed confined in space and did not leverage the extent 
of material possibilities and the physical space around them. 
Moreover, the reliance on a traditional computer seemed to 
separate the maker from the experience of working in the physical 
world and with physical materials. With Pixel, we wanted to 
address these limitations. Thus, Pixel modules can be distributed 
and programmed throughout the maker’s environment (supported 
both by the gestural and visual programming languages), freeing 
them from working at a fixed location (i.e., the computer) and 
allowing greater exploration of the materials themselves. 
While our work is still preliminary, we are guided by the 
following six design aims: 
• Design to emphasize materiality: Allow the makers to stay focused 

on using materials and the affordances of the physical world. For 
example, eliminate the need to tether to a computer. 

• Allow programming everywhere: Relatedly, eliminate the need to 
write programs away from the physical context of a maker’s work 
(such as when using a traditional computer for programming). Allow 
makers to do programming tasks among the materials. 

• Provide responsive feedback: Provide immediate responsive 
feedback for actions to reveal the system state and to support thinking, 
playing, and confidence in the system, and to support working with 
materials. 

• Hide system complexity: Similar to popular programming languages, 
we aim to abstract unnecessary system complexity. For example, we 
aim to free makers from having to create loop structures by creating 
them by default. 

• Allow easy connection: Support making intuitive links between 
physical materials, electronic peripherals, and Pixel modules. For 
example, connecting a tactile switch as an input to a module. 

• Allow easy sequencing: Provide easy support for sequencing events. 
For example, easily creating a sequenced light show. 

4. PROTOTYPE OVERVIEW 
Our overarching goal for Pixel is to design a physical computing 
platform that makes the combined experience of computer 
programming, circuit building, and using materials more coherent. 
As noted in the introduction, Pixel is comprised of three parts: (i) 
“smart” physical modules that form the TUI; (ii) a gestural 
programming language that defines the set of gestures recognized 

by modules, and (iii) a visual programming environment for 
specifying detailed system behaviors. We cover each below. 

4.1 Modules and Gestural Programming 
Each Pixel module (e.g., Figure 3) is a self-contained wireless 
computer that can automatically recognize gestures, form ad hoc 
wireless connections with other Pixel modules, and has physical 
ports for connecting electronic input and output peripherals. Our 
current prototype modules (viewable in Figure 1) are plastic 
enclosures fabricated using a 3D printer containing an Arduino-
compatible microcontroller, ZigBee mesh and Wi-Fi networking 
breakout boards for communication, an inertial measurement unit 
for gesture recognition, a circuit to connect I/O peripherals, and an 
RGB LED. The embedded LEDs give each module a 
“personality” and deliver immediate visual feedback about 
recognized gestures and program state. 
Module behavior: By default, each module detects the state of its 
electronic input switch (either “open” or “closed”), and, if 
“closed”, powers a connected electronic output device (if any). 
This succession of behavior from input to output is called the 
module’s activation routine. For example, a tactile switch could 
be connected to the input port and a DC motor could be connected 
to its output port with alligator clips. When the tactile switch is 
pressed, the motor activates. 

Modules operate in one of two modes. In “performance” (or 
“execution”) mode, each module simply performs its activation 
routine. To use gestures, however, modules must be in a second 
mode called “composition” mode. In this mode, gestures are used 
to specify the behaviors that make up the high-level structure of a 
Pixel program, primarily creating sequential behavior between 
multiple modules and specifying conditional behaviors. 

Each Pixel module recognizes the following gestures: “swinging,” 
being shaken, tapped to another module, and whether a module is 
being tilted left or right. Pixel responds to a gesture by providing 
direct visual feedback and changing Pixel’s behavior as defined 
by the gestural language. For example, “swinging” (raising a 
module, then quickly swinging it down again) causes a module in 
performance mode to enter composition mode and “shaking” 
reverses the effect of the gesture, returning to performance mode 
(i.e., similar to common “undo” functions). 
Connecting modules: Modules can be wirelessly connected to 
one another with gestures. For example, tapping two modules 
together puts the modules in sequence, forming looping patterns 
of behavior. The loop is created and started automatically by Pixel 
and runs ad infinitum. One by one, each module in a sequence 
checks the state of its input switch (if connected) and supplies 
power to a connected output device (if any). Pixel visualizes 

 
Figure 3: A Pixel module is a self-contained wireless embedded computer that recognizes gestures and can form ad hoc connections with other 
Pixel modules. Modules also support wired connections for integrating with I/O peripherals. In (e), a tactile button is connected to a Pixel module, 
which, when pressed, activates a connected motor. 



looping patterns of behavior by softly lighting the modules in a 
“sequence color” (e.g., green in Figure 3) and lighting the “active” 
module in the sequence brightly. These looping patterns form the 
high-level structure of a program for Pixel. 
Loops: Programs in Pixel are looping behavior sequences. Pixel 
has two types of loops: one at the system level (across module 
sequences, described above) and another in each module 
(described in Visual Programming Environment). 
Example scenario, continued: Figure 3 shows the steps Alanna 
takes to create a remote control vehicle using Pixel and basic 
materials (Figure 2). She creates a simple cardboard vehicle with 
wheels, gesturally sequences and remaps the “remote” module’s 
input to the “vehicle” module’s output. She connects a tactile 
switch to the “remote” module, and connects a motor to the 
“vehicle” module’s output. Finally, she tapes the “motor” module 
and the motor itself onto the cardboard vehicle’s platform. With 
that, she can press the tactile button on the first module to 
wirelessly control the motor on the vehicle—her very own remote 
control vehicle! In the next section, we describe how Alanna 
changes the motor’s speed using the visual environment on her 
tablet.  

4.2 Visual Programming Environment 
To finely tune module behavior, Pixel includes a touch-based 
visual programming environment, accessible from a mobile 
device (Figure 4). The visual environment offers an interface to 
configure each module’s behavior loop wirelessly and in real-
time. For example, with the visual environment, one could 
configure a module’s output to gradually increase the brightness 
of an attached LED. With gestures alone, the LED can only be 
made to switch on or off. 

When first opened, the visual environment shows the behavior 
loop for the first module in the sequence. One can swipe left or 
right to select the behavior loops for other modules. With the 
module of interest selected, one can add behaviors represented as 
nodes to the module’s behavior loop.  

Example scenario, continued: Figure 4 shows how Alanna 
adjusts the speed of her car’s motor using the visual environment. 
First, she opens the visual environment on her tablet, creates a 
“motor” behavior node, and then adjusts the motor’s speed by 
dragging a “slider”, monitoring the motor speed as she changes it. 

5. CONCLUSION AND FUTURE WORK 
Pixel is an ongoing effort to build a physical computing platform 
that offers more complete support for its constituent activities, 

specifically programming, circuit building, and working with 
physical materials. We will continue developing Pixel’s gestural 
and visual environments, and explore collaborative behavior 
composition with both environments. We will also refine the 
physical design of modules. (e.g., explore enclosure materials). 
We plan to conduct evaluations of Pixel in museums and 
workshops. Ultimately, we hope that our work will inspire further 
development on physical computing tools that provide integrated 
support for making with physical materials, computer 
programming, and electronic circuit building.  
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Figure 4: While gestures are used for connecting modules, 
establishing sequences, and specifying I/O, the visual composer 
allows makers to fine-tune module behaviors. Above, Alanna is using 
the visual composer to specify the speed of her vehicle’s motor. 


