
Physically Computing Physical Computing: Creative Tools
for Building with Physical Materials and Computation

Michael Gubbels1 and Jon E. Froehlich2

Makeability Lab | Human-Computer Interaction Lab (HCIL)
1College of Information Studies, 2Department of Computer Science

University of Maryland, College Park, MD
{mgubbels, jonf}@umd.edu

ABSTRACT
Physical computing refers to the activity of creating physical
artifacts and giving them behaviors through a combination of
building with physical materials, computer programming, and
circuit building (e.g., connecting sensors and actuators). Physical
computing is common among artists, engineers, and even children
(e.g., in workshops). Recent tools such as the Arduino have
lowered barriers to physical computing by abstracting away
technical complexity (e.g., interfacing with sensors). However,
these tools are based on traditional programming paradigms and
are often extraneous to the artifacts being built rather than an
integral part. They often tether makers to a computer separate
from the context of their making. We present Pixel, a tangible
user interface for physical computing that addresses some of these
issues. We describe our current prototype, and the gestural and
visual programming environments for building with it.

Categories and Subject Descriptors
D.5.2 [Information Interfaces and Presentation]: User
Interfaces—user-centered design

General Terms
Design, Human Factors, Languages

Keywords
Physical computing; tangible user interface; constructionist
learning; programming language; digital manipulatives

1. INTRODUCTION
Physicality plays a central role in shaping human experiences. It
affects the way we touch, think, manipulate, and move about and
make sense of the world [8]. Nevertheless, as famously portrayed
by Igoe et al.’s “finger eye” [10], the human body and the
physical environment have been long been ignored by computers.
Recently, however, computing and sensing technologies are
increasingly built into material things, transforming our artifacts
and environments to be “smarter” and more aware of themselves
and their context. With this shift, the role of physicality, context,
and materiality in computing becomes increasingly important. In
this paper, we explore a new platform for building physical
computing experiences that takes advantage of its own physicality
to enable makers to construct physical artifacts and program their
behaviors without a conventional computer.

While recent technologies such as the Arduino [1], Spark Core
[16] MaKey MaKey [4], and Scratch4Arduino [9, 13] have
focused on making some aspects of physical computing easier—
specifically programming and connecting electronic peripherals—

these tools require conventional means for programming (e.g., a
keyboard, mouse, and two-dimensional display), limiting their
approachability and how they can be used. Moreover, these
systems rely solely on traditional textual programming languages
on a computer, which are often physically and even logically
separate from the artifact being built. By contrast, consider how
clay can be shaped directly with one’s hands. Recognizing this
separation, others have begun to explore more direct means of
computing through tangible user interfaces (TUIs) for
programming including FlowBlocks [19], AlgoBlock [18], and
Topobo [14]. However, their tangible manifestations, logical
constructs, and even syntax are often little more than physical
manifestations of their counterparts in traditional programming.

We present Pixel, a modular tangible user interface designed
specifically for creating and shaping physical computing
experiences. Pixel is programmable through the performance of
specific movements with modules, called gestures, and a visual
programming language. Pixel consists of three parts: (i) a set of
one or more programmable, cube-shaped modules that together
form the modular TUI, (ii) a gestural programming language for
programming the TUI, used to specify high-level system behavior,
and (iii) a visual programming environment for specifying
detailed system behaviors.

Pixel abstracts some of the complexity of embedding behaviors in
artifacts being built, specifically loops and I/O mappings. Our
abstractions take inspiration from music sequencers (e.g.,
Monome 64 from monomer.org) and the potter’s wheel. Like

Figure 1: Pixel is a new tangible user interface (TUI) for building
physical computing experiences. It is comprised of three parts: (i) a
set of one or more wireless Pixel modules that form the TUI (3 are
shown above); (ii) a gestural programming language that can link the
modules and specific high-level system behavior; (iii) a visual, touch-
based programming language for specifying more sophisticated
behaviors (e.g., conditionals, delays)—shown above on the tablet.

IDC 2014, June 17-20 2014, Aarhus, Denmark. http://www.idc2014.org
All rights retained by the author(s).

these, Pixel provides a “live” looping context into which modules
can be sequenced using gestures and for programming individual
modules via the visual environment. This allows makers to shift
their attention from explicitly specifying loop constructs in an
abstract syntax to directly sequencing behaviors themselves
within an existing looping infrastructure, fundamentally changing
the programming activity. Similar to the way a potter’s wheel
provides a potter with a platform that continuously rotates to assist
them in shaping clay, Pixel provides an automatically looping
structure into which modules can be sequenced using the gestural
language. This enables makers to focus on composing behaviors
rather than constructing looping constructs and communication
between devices. This is analogous to shifting a traditional
potter’s focus to directly shaping clay on a potting wheel from
creating the potting wheel or other tools themselves or sculpting
the clay as if it were made on a potting wheel. We believe this
approach may lead to a novel paradigm for designing physical
computing platforms that support a more seamless exploration
across the boundaries between computation and materiality. These
ways of programming are described further in Section 4.

Our early-stage work on Pixel offers three contributions: (i) a
novel interactive loop paradigm that creates a loop that repeats
automatically and continuously. This extends the notion of “event
loops” as expressed by Processing and Arduino, further
abstracting unnecessary complexity from the user; (ii) a
physically-based gestural programming language that allows
makers to sketch high-level program structure between Pixel
modules and peripherals (e.g., sensors) and to create mappings
between input and output peripherals; (iii) a visual programming
language that allows makers to compose sophisticated module
behaviors via a touch-based tablet environment (e.g., changing the
speed or direction of a connected motor).

To illustrate how one might use Pixel, we develop an example
scenario throughout this paper inspired by Alan Kay’s
demonstration of Sqeak Etoys [7]. We will show how a child
named Alanna uses Pixel to build a remote control car (Figure 2).

2. BACKGROUND AND RELATED WORK
Researchers have long appreciated that physical materials can
influence how people understand and engage with the world. In
1837, Friedrich Fröbel, the inventor of the first kindergarten in
Germany, famously designed a diverse range of physical objects
to help children learn and to recognize the common patterns and
forms found in nature [3]. These material manipulatives served as
“thinking tools.” They provided a “medium” for children to
explore abstract concepts such as shape, size, and color.

In the same way, researchers today appreciate the computer as a
“computational material” that might support children to discover
and recognize patterns in the physical world, and to create new
patterns and behaviors within it. Papert captures this sentiment in
his assertion, “We can give children unprecedented power to
invent and carry out exciting projects by providing them with

access to computers, with a suitably clear and intelligible
programming language and with peripheral devices capable of
producing on-line real-time action” (p. 353, [11]). This vision
appears clearer than ever before with the advent of affordable
embedded physical computing platforms (e.g., Arduino), systems
that sense, respond to, and affect the physical world, and even
have Internet connectivity [e.g., 13]. Yet, certain aspects of
programming (e.g., syntax [17]) as well as connecting peripherals
to physical computing platforms (i.e., connecting an
accelerometer to an embedded computer) present significant
challenges to children.

Visual programming languages (VPLs) may simplify some
aspects of programming. For example, Scratch, which was
inspired by the way children play and build with Lego, presents
programming as a collection of blocks visually designed to snap
together in specific ways to create programs [12]. Scratch has
been found to successfully introduce children to programming
concepts in an engaging manner [e.g., 5]. Similarly, Modkit (and
Scratch4Arduino), a VPL heavily influenced by Scratch, suggests
that it simplifies some programming tasks on the Arduino [2].
However, these VPLs are not well integrated with the task of
physically connecting peripheral devices (e.g., a DC motor) to
computing platforms, a crucial part of physical computing. Pixel’s
VPL provides step-by-step guidance in situ for connecting
electronic peripherals (such as Adafruit does with tutorials).

Recent efforts, such as littleBits, Snap Circuits, and, earlier, Lego
Mindstorms simplify aspects of electronic circuit building for
children (e.g., [6]). However, these are kits designed for use with
proprietary components, not common, widely available electronic
peripherals. Others have simplified interfacing with prototyping
platforms to ease connecting physical materials and electronics.
For example, MaKey MaKey allows children to create electronic
switches and improvise input devices using a wide range of
conductive materials, including bananas, copper tape, wire, fruit,
and skin [4]. Pixel takes this further by additionally allowing
children to (i) connect electronic output devices to modules (in
addition to inputs) to create conditional behaviors and (ii) create
parallel sequences of these conditional behaviors.

While Scratch and MaKey MaKey provide valuable insight for
how to design a programmable physical computing platform, they
also have limitations. MaKey MaKey is not easily programmable
(it uses Arduino) and is not, itself, affected by manipulating the
materials connected to it. Similarly, manipulating peripherals
connected to a computer does not affect the programs built in
Scratch (or vice versa). This means that when makers change
some aspect of the materials connected to a computer, they cannot
observe the effect on the program (or vice versa). Sqeak Etoys [7]
and Topobo [15] hint at ways to directly address this limitation
through design. These allow programmers to adjust behaviors
(e.g., rotation) of built objects through direct rotation of virtual
and physical objects themselves. Pixel allows the user to specify
new behaviors through gesture and the visual programming
environment—these behaviors are manifest immediately in the
modules themselves.

3. DESIGN AIMS
We have six design aims drawn from the above literature as well
as observations from our own experiences as makers and the first
author’s observations of children while facilitating activities at
workshops, museum exhibits, and community events. These
making activities focused on creating artifacts from a wide range
of physical materials (e.g., paper, copper tape), basic digital

Figure 2: The materials used in our example, in which Alanna builds
a remote control car with Pixel.

electronics (e.g., MaKey MaKey, batteries, LEDs, switches), and
programming (in Scratch and Arduino).
While impressed by how quickly children understood some facets
of prototyping tools like MaKey MaKey such as how to connect a
custom video game controller using alligator clips, we were
dissatisfied with how these tools constrained children’s making
activities. For example, because both Scratch4Arduino and the
MaKey MaKey require physically tethering to a computer,
children seemed confined in space and did not leverage the extent
of material possibilities and the physical space around them.
Moreover, the reliance on a traditional computer seemed to
separate the maker from the experience of working in the physical
world and with physical materials. With Pixel, we wanted to
address these limitations. Thus, Pixel modules can be distributed
and programmed throughout the maker’s environment (supported
both by the gestural and visual programming languages), freeing
them from working at a fixed location (i.e., the computer) and
allowing greater exploration of the materials themselves.
While our work is still preliminary, we are guided by the
following six design aims:
• Design to emphasize materiality: Allow the makers to stay focused

on using materials and the affordances of the physical world. For
example, eliminate the need to tether to a computer.

• Allow programming everywhere: Relatedly, eliminate the need to
write programs away from the physical context of a maker’s work
(such as when using a traditional computer for programming). Allow
makers to do programming tasks among the materials.

• Provide responsive feedback: Provide immediate responsive
feedback for actions to reveal the system state and to support thinking,
playing, and confidence in the system, and to support working with
materials.

• Hide system complexity: Similar to popular programming languages,
we aim to abstract unnecessary system complexity. For example, we
aim to free makers from having to create loop structures by creating
them by default.

• Allow easy connection: Support making intuitive links between
physical materials, electronic peripherals, and Pixel modules. For
example, connecting a tactile switch as an input to a module.

• Allow easy sequencing: Provide easy support for sequencing events.
For example, easily creating a sequenced light show.

4. PROTOTYPE OVERVIEW
Our overarching goal for Pixel is to design a physical computing
platform that makes the combined experience of computer
programming, circuit building, and using materials more coherent.
As noted in the introduction, Pixel is comprised of three parts: (i)
“smart” physical modules that form the TUI; (ii) a gestural
programming language that defines the set of gestures recognized

by modules, and (iii) a visual programming environment for
specifying detailed system behaviors. We cover each below.

4.1 Modules and Gestural Programming
Each Pixel module (e.g., Figure 3) is a self-contained wireless
computer that can automatically recognize gestures, form ad hoc
wireless connections with other Pixel modules, and has physical
ports for connecting electronic input and output peripherals. Our
current prototype modules (viewable in Figure 1) are plastic
enclosures fabricated using a 3D printer containing an Arduino-
compatible microcontroller, ZigBee mesh and Wi-Fi networking
breakout boards for communication, an inertial measurement unit
for gesture recognition, a circuit to connect I/O peripherals, and an
RGB LED. The embedded LEDs give each module a
“personality” and deliver immediate visual feedback about
recognized gestures and program state.
Module behavior: By default, each module detects the state of its
electronic input switch (either “open” or “closed”), and, if
“closed”, powers a connected electronic output device (if any).
This succession of behavior from input to output is called the
module’s activation routine. For example, a tactile switch could
be connected to the input port and a DC motor could be connected
to its output port with alligator clips. When the tactile switch is
pressed, the motor activates.

Modules operate in one of two modes. In “performance” (or
“execution”) mode, each module simply performs its activation
routine. To use gestures, however, modules must be in a second
mode called “composition” mode. In this mode, gestures are used
to specify the behaviors that make up the high-level structure of a
Pixel program, primarily creating sequential behavior between
multiple modules and specifying conditional behaviors.

Each Pixel module recognizes the following gestures: “swinging,”
being shaken, tapped to another module, and whether a module is
being tilted left or right. Pixel responds to a gesture by providing
direct visual feedback and changing Pixel’s behavior as defined
by the gestural language. For example, “swinging” (raising a
module, then quickly swinging it down again) causes a module in
performance mode to enter composition mode and “shaking”
reverses the effect of the gesture, returning to performance mode
(i.e., similar to common “undo” functions).
Connecting modules: Modules can be wirelessly connected to
one another with gestures. For example, tapping two modules
together puts the modules in sequence, forming looping patterns
of behavior. The loop is created and started automatically by Pixel
and runs ad infinitum. One by one, each module in a sequence
checks the state of its input switch (if connected) and supplies
power to a connected output device (if any). Pixel visualizes

Figure 3: A Pixel module is a self-contained wireless embedded computer that recognizes gestures and can form ad hoc connections with other
Pixel modules. Modules also support wired connections for integrating with I/O peripherals. In (e), a tactile button is connected to a Pixel module,
which, when pressed, activates a connected motor.

looping patterns of behavior by softly lighting the modules in a
“sequence color” (e.g., green in Figure 3) and lighting the “active”
module in the sequence brightly. These looping patterns form the
high-level structure of a program for Pixel.
Loops: Programs in Pixel are looping behavior sequences. Pixel
has two types of loops: one at the system level (across module
sequences, described above) and another in each module
(described in Visual Programming Environment).
Example scenario, continued: Figure 3 shows the steps Alanna
takes to create a remote control vehicle using Pixel and basic
materials (Figure 2). She creates a simple cardboard vehicle with
wheels, gesturally sequences and remaps the “remote” module’s
input to the “vehicle” module’s output. She connects a tactile
switch to the “remote” module, and connects a motor to the
“vehicle” module’s output. Finally, she tapes the “motor” module
and the motor itself onto the cardboard vehicle’s platform. With
that, she can press the tactile button on the first module to
wirelessly control the motor on the vehicle—her very own remote
control vehicle! In the next section, we describe how Alanna
changes the motor’s speed using the visual environment on her
tablet.

4.2 Visual Programming Environment
To finely tune module behavior, Pixel includes a touch-based
visual programming environment, accessible from a mobile
device (Figure 4). The visual environment offers an interface to
configure each module’s behavior loop wirelessly and in real-
time. For example, with the visual environment, one could
configure a module’s output to gradually increase the brightness
of an attached LED. With gestures alone, the LED can only be
made to switch on or off.

When first opened, the visual environment shows the behavior
loop for the first module in the sequence. One can swipe left or
right to select the behavior loops for other modules. With the
module of interest selected, one can add behaviors represented as
nodes to the module’s behavior loop.

Example scenario, continued: Figure 4 shows how Alanna
adjusts the speed of her car’s motor using the visual environment.
First, she opens the visual environment on her tablet, creates a
“motor” behavior node, and then adjusts the motor’s speed by
dragging a “slider”, monitoring the motor speed as she changes it.

5. CONCLUSION AND FUTURE WORK
Pixel is an ongoing effort to build a physical computing platform
that offers more complete support for its constituent activities,

specifically programming, circuit building, and working with
physical materials. We will continue developing Pixel’s gestural
and visual environments, and explore collaborative behavior
composition with both environments. We will also refine the
physical design of modules. (e.g., explore enclosure materials).
We plan to conduct evaluations of Pixel in museums and
workshops. Ultimately, we hope that our work will inspire further
development on physical computing tools that provide integrated
support for making with physical materials, computer
programming, and electronic circuit building.

6. REFERENCES
[1] Arduino: http://www.arduino.cc/.
[2] Booth, T. and Stumpf, S. 2013. End-user experiences of visual and

textual programming environments for Arduino. End-User
Development. (2013), 25–39.

[3] Brosterman, N. 1997. Inventing Kindergarten. Harry N. Abrams.
[4] Collective, B.M. and Shaw, D. 2012. Makey Makey. Proceedings of

the Sixth International Conference on Tangible, Embedded and
Embodied Interaction - TEI ’12 (New York, New York, USA, Feb.
2012), 367.

[5] Franklin, D. et al. 2013. Assessment of computer science learning in
a scratch-based outreach program. Proceeding of the 44th ACM
technical symposium on Computer science education - SIGCSE ’13.
(2013), 371.

[6] Johnson, S. and Thomas, A.P. 2010. Squishy circuits. Proceedings of
the 28th of the international conference extended abstracts on
Human factors in computing systems - CHI EA ’10 (New York, New
York, USA, Apr. 2010), 4099.

[7] Kay, A. 2005. Squeak Etoys, Children & Learning.
[8] Klemmer, S.R., Hartmann, B. and Takayama, L. 2006. How bodies

matter. Proceedings of the 6th ACM conference on Designing
Interactive systems - DIS ’06 (New York, New York, USA, Jun.
2006), 140.

[9] Millner, A. and Baafi, E. 2011. Modkit. Proceedings of the 10th
International Conference on Interaction Design and Children - IDC
’11 (New York, New York, USA, Jun. 2011), 250–253.

[10] O’Sullivan, D. and Igoe, T. 2004. Physical Computing: Sensing and
Controlling the Physical World with Computers. Thomson
Publishing Group.

[11] Papert, S. 1980. Teaching Children Thinking. 5, (1980), 353–365.
[12] Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-

Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E. and Silver, J. 2009. Scratch. Communications of the
ACM. 52, 11 (Nov. 2009), 60.

[13] Rosenbaum, E., Eastmond, E. and Mellis, D. 2010. Empowering
programmability for tangibles. Proceedings of the fourth
international conference on Tangible, embedded, and embodied
interaction - TEI ’10 (New York, New York, USA, Jan. 2010), 357.

[14] Solos, H., Parkes, A.J. and Ishii, H. 2004. Topobo  : A Constructive
Assembly System with Kinetic Memory. (2004).

[15] Solos, H., Parkes, A.J. and Ishii, H. 2004. Topobo  : A Constructive
Assembly System with Kinetic Memory. (2004).

[16] Spark Core: https://www.spark.io/.
[17] Stefik, A. and Siebert, S. 2013. An Empirical Investigation into

Programming Language Syntax. ACM Transactions on Computing
Education. 13, 4 (Nov. 2013), 1–40.

[18] Suzuki, H. and Kato, H. 1995. Interaction-level support for
collaborative learning. The first international conference on
Computer support for collaborative learning - CSCL ’95
(Morristown, NJ, USA, Oct. 1995), 349–355.

[19] Zuckerman, O. and Resnick, M. 2005. Extending Tangible Interfaces
for Education  : Digital Montessori-inspired Manipulatives. (2005).

Figure 4: While gestures are used for connecting modules,
establishing sequences, and specifying I/O, the visual composer
allows makers to fine-tune module behaviors. Above, Alanna is using
the visual composer to specify the speed of her vehicle’s motor.

