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Poorly maintained sidewalks pose considerable accessibility challenges for people with 

mobility impairments. Despite comprehensive civil rights legislation of Americans 

with Disabilities Act, many city streets and sidewalks in the U.S. remain inaccessible. 

The problem is not just that sidewalk accessibility fundamentally affects where and 

how people travel in cities, but also that there are few, if any, mechanisms to determine 

accessible areas of a city a priori. 

To address this problem, my Ph.D. dissertation introduces and evaluates new 

scalable methods for collecting data about street-level accessibility using a combination 

of crowdsourcing, automated methods, and Google Street View (GSV). My 

dissertation has four research threads. First, we conduct a formative interview study to 

establish a better understanding of how people with mobility impairments currently 

assess accessibility in the built environment and the role of emerging location-based 



  

technologies therein. The study uncovers the existing methods for assessing 

accessibility of physical environment and identify useful features of future assistive 

technologies. Second, we develop and evaluate scalable crowdsourced accessibility 

data collection methods. We show that paid crowd workers recruited from an online 

labor marketplace can find and label accessibility attributes in GSV with accuracy of 

81%. This accuracy improves to 93% with quality control mechanisms such as majority 

vote. Third, we design a system that combines crowdsourcing and automated methods 

to increase data collection efficiency. Our work shows that by combining 

crowdsourcing and automated methods, we can increase data collection efficiency by 

13% without sacrificing accuracy. Fourth, we develop and deploy a web tool that lets 

volunteers to help us collect the street-level accessibility data from Washington, D.C. 

As of writing this dissertation, we have collected the accessibility data from 20% of the 

streets in D.C. We conduct a preliminary evaluation on how the said web tool is used. 

Finally, we implement proof-of-concept accessibility-aware applications with 

accessibility data collected with the help of volunteers. 

My dissertation contributes to the accessibility, computer science, and HCI 

communities by: (i) extending the knowledge of how people with mobility impairments 

interact with technology to navigate in cities; (ii) introducing the first work that 

demonstrates that GSV is a viable source for learning about the accessibility of the 

physical world; (iii) introducing the first method that combines crowdsourcing and 

automated methods to remotely collect accessibility information; (iv) deploying 

interactive web tools that allow volunteers to help populate the largest dataset about 



  

street-level accessibility of the world; and (v) demonstrating accessibility-aware 

applications that empower people with mobility impairments. 
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Figure 3.4. Examples of sketches from Part 2 of the study. (a) a mobile map that shows the accessible 

route and placement of curb ramps (sketched by P7); (b) a virtual video walk through feature to 

see within/around the housing (P9); (c) a floor map visualization to assess spaciousness of a 

restaurant floor (P20); (d) a search tool with accessibility rating of a place and reviews written by 

other mobility impaired (described by P12, sketched by a researcher), and (e) a location directory 

with advanced search feature to select accessibility attribute (P11). .......................................... 54 

Figure 3.5. Design probe a-d that visualize street-level accessibility. (a & b) Neighborhood- and 

sidewalk-level accessibility visualizations that shows accessible areas in green and inaccessible 

areas in red. (c & d) Point-level visualization that show specific accessibility barriers in dots, both 

categorized (c) and non-categorized (d). ................................................................................... 60 

Figure 3.6. Citywide accessibility score comparison. This probe quantifies the accessibility of entire 

cities with a single accessibility score along with brief, textual rationale. .................................. 61 

Figure 3.7. Accessibility-aware location search. A point-of-interest search website similar to yelp.com 

but augmented with accessibility information. Users can search for a business or other point-of-

interest with a keyword and location. Each search result is accompanied by a 5-level accessibility 

score, which can be used for sorting and filtering ..................................................................... 62 

Figure 3.8 Accessible bus stop visualization. Users can enter a location and see proximal bus stops, 

which are color-coded based on accessibility (green for accessible, red for inaccessible). ......... 63 

Figure 3.9. Visualizing building accessibility. (Top-left) The first design uses a top-down map 

visualization to indicate the accessibility of public buildings in a selected area. (Top-right) The 

floorplan visualization highlights accessible and inaccessible features such as elevators and stairs. 

(Bottom) The third design focuses on accessible routing interfaces for indoor environments. ... 64 

Figure 3.10. Accessibility-aware routing. Similar to Apple or Google Maps, these probes allow the user 

to enter a start and end location and view suggested routes. In our designs, however, the shortest 

path is visualized as well as the shortest accessible path. The probe on the left shows one alternative 

accessible path while the one on the right shows multiple alternatives. ..................................... 65 

Figure 4.1. Using crowdsourcing and Google Street View images, we examined the efficacy of three 

different labeling interfaces on task performance to locate and assess sidewalk accessibility 

problems: (a) Point, (b) Rectangle, and (c) Outline. Actual labels from our study shown. ......... 71 

Figure 4.2. We propose and investigate the use of crowdsourcing to find, label, and assess sidewalk 

accessibility problems in Google Streetview (GSV) imagery. The GSV images and annotations 

above are from our experiments with Mechanical Turk crowd workers. .................................... 72 

Figure 4.3. The number of turkers per image vs. accuracy for each of the three labeling interfaces. Note 

that the y-axis begins at 50%. ................................................................................................... 82 

Figure 4.4.  Labeling GSV images is a three step process consisting of (a) marking the location of the 

sidewalk problem in the image, (b) categorizing the problem into one of five types, and (c) 

assessing the problem’s severity. Here, the utility pole is labeled Object in Path and rated 5 (Not 

Passable). ................................................................................................................................. 85 

Figure 4.5. The verification interface used to experiment with crowdsourcing validation of turker 

labels—only one label is validated at a time in batches of 20. (a) A correctly labeled No Curb 

Ramp problem; (b) A false positive Object in Path label (the utility pole is located in the grass and 

not in the sidewalk); (c) A false negative example: The cars should have been marked as Object in 

Path.......................................................................................................................................... 86 

Figure 4.6. Examples of ground truth labels. (a) All three researchers labeled the object blocking the 

path. One researcher labeled fallen leaf on the ground as a surface problem, but this label was 

filtered out by ground truth label consolidation process. (b) Labels of missing curb ramps by three 
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researchers. (c) Three researchers labeled the end of the sidewalk as Prematurely Ending Sidewalk.

 ................................................................................................................................................. 92 

Figure 4.7: Binary and multiclass performance at the image- and pixel-levels with varying majority vote 

group sizes. Each graph point is based on multiple permutations of the majority vote group size 

across all 229 images. Standard error bars are in black (barely visible due to low variance). ..... 94 

Figure 4.8: (a and b) Show the effect of increasingly aggressive turker elimination thresholds at the 

image- and pixel-levels based on average multiclass performance of 5 images. Error bars are 

standard deviation (for blue) and standard error (for red). As the threshold increases, fewer turkers 

remain and uncertainty increases. (c) Compares the effectiveness of various quality control 

mechanisms on performance at the image level. ....................................................................... 96 

Figure 4.9: A selection of the top and bottom three performing images in our dataset based on multiclass 

pixel-level area overlap. Left column: original GSV image; center column: majority vote ground 

truth from researchers using 15% overlap; right column: turker labels. Numbers show turker 

performance results for that image, from top to bottom: image-level binary, image-level multiclass; 

pixel-level binary, pixel-level multiclass. ................................................................................ 100 

Figure 4.10. The histograms showing the distribution of severity scores associated with the correct labels 

provided by crowd workers. The raw counts are shown in Table 4.6. ...................................... 104 

Figure 5.1: In this section, we present Tohme, a scalable system for semi-automatically finding curb 

ramps in Google Streetview (GSV) panoramic imagery using computer vision, machine learning, 

and crowdsourcing. The images above show an actual result from our evaluation. .................. 111 

Figure 5.2: The eight urban (blue) and residential (red) audit areas used in our studies from Washington 

DC, Baltimore, LA, and Saskatoon. This includes 1,086 intersections across a total area of 

11.3km2. Among these areas, we physically surveyed 273 intersections (see annotations in a-d).

 ............................................................................................................................................... 114 

Figure 5.3. Example curb ramps (top two rows) and missing curb ramps (bottom row) from our GSV 

dataset .................................................................................................................................... 115 

Figure 5.4. A workflow diagram depicting Tohme’s four main sub-systems. In summary, svDetect 

processes every GSV scene producing curb ramp detections with confidence scores. svControl 

predicts whether the scene/detections contain a false negative. If so, the detections are discarded 

and the scene is fed to svLabel for manual labeling. If not, the scene/detections are forwarded to 

svVerify for verification. The workflow attempts to optimize accuracy and speed. .................. 119 

Figure 5.5. A workflow diagram depicting Tohme’s four main sub-systems. In summary, svDetect 

processes every GSV scene producing curb ramp detections with confidence scores. svControl 

predicts whether the scene/detections contain a false negative. If so, the detections are discarded 

and the scene is fed to svLabel for manual labeling. If not, the scene/detections are forwarded to 

svVerify for verification. The workflow attempts to optimize accuracy and speed. ................. 121 

Figure 5.6. The svLabel interface. Crowd workers use the Explorer Mode to interactively explore the 

intersection (via pan and zoom) and switch to the Labeling Mode to label curb ramps and missing 

curb ramps. Clicking the Submit button uploads the target labels. The turker is then transported to 

a new location unless the HIT is complete. ............................................................................. 122 

Figure 5.7. svLabel automatically tracks the camera angle and repositions any applied labels in their 

correct location as the view changes. When the turker pans the scene, the overlay on the map view 

is updated and the green “explored” area increases (bottom right of interface). Turkers can zoom 

in up to two levels to inspect distant corners. Labels can be applied at any zoom level and are 
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Figure 5.8. The svVerify interface is similar to svLabel but is designed for verifying rather than labeling. 

When the mouse hovers over a label, the cursor changes to a garbage can and a click removes the 

label. The user must pan 360 degrees before submitting the task. ............................................ 125 

Figure 5.9. The trained curb ramp DPM model. Each row represents an automatically learned viewpoint 

variation. The root and parts filter visualize learned weights for the gradient features. The 

displacement costs for parts are shown in (c). ......................................................................... 128 

Figure 5.10. Using code from [205], we download GSV’s 3D-point cloud data and use this to create a 

ground plane mask to post-process DPM output. The 3D depth data is coarse: 512 x 256px. .. 129 

Figure 5.11. Example results from svDetect’s three-stage curb ramp detection framework. Bounding 

boxes are colored by confidence score (lighter is higher confidence). As this figure illustrates, 

setting the detection threshold to -0.99 results in a relatively low false negative rate at a cost of a 

high false positive rate (false negatives are more expensive to correct). Many false positives are 

eliminated in Stages 2 and 3. The effect of Stage 2’s ground plane mask is evident in (b). 

Acronyms: TP=true positive; FP=false positive; FN=false negative ........................................ 131 

Figure 5.12.  The precision-recall curve of the three-stage curb ramp detection process constructed by 

stepping through various DPM detection thresholds (from -3-to-3 with a 0.01 step). For the final 

svDetect module, we selected a DPM detection threshold of -0.99, which balances true positive 

detections with false positives................................................................................................. 132 

Figure 5.13. We use top-down stylized Google Maps (bottom row) to infer intersection complexity by 

counting black pixels (streets) in each scene. A higher count correlates to higher complexity . 135 

Figure 5.14: Tohme achieves comparable results to a manual labeling approach alone but with a 13% 

reduction in task completion time cost. Error bars are standard deviation. ............................... 140 

Figure 5.15:  svControl allocated 769 scenes to svLabel and 277 scenes to svVerify. 379 out of 439 

scenes (86.3%) where svDetect failed were allocated “correctly” to svLabel. Recall that svControl 

is conservative in routing work to svVerify because false negative labels are expensive to correct; 

thus, the 86.3% comes at a high false positive cost (390). ....................................................... 141 

Figure 5.16: Finding curb ramps in GSV imagery can be difficult. Common problems include occlusion, 

illumination, scale differences because of distance, viewpoint variation (side, front, back), between 

class similarity, and within class variation. For between class similarity, many structures exist in 

the physical world that appear similar to curb ramps but are not. For within class variation, there 

are a wide variety of curb ramp designs that vary in appearance. White arrows are used in some 

images to draw attention to curb ramps. Some images contain multiple problems. .................. 143 

Figure 5.17: As expected, performance drops as the area overlap threshold increases; however, the 

relative difference between Tohme and baseline (svLabel) remains consistent. ....................... 144 

Figure 5.18: In the quickVerify interface, workers could randomly verify CV curb ramp detection 

patches. After providing an answer for a given detection, the patch would “explode” (bottom left) 

and a new one would load in its place. Though fast, verification accuracies went down in an 

experiment of 160 GSV scenes and 59 turkers. ....................................................................... 145 

Figure 6.1. Geometry data used in this study: (a) D.C. city boundary, (b) neighborhoods, and (c) street 

segments. ............................................................................................................................... 154 

Figure 6.2. SVLabel v.2 has two modes. (a) Users can use the Explorer Mode to pan around to explore 

the location and click white arrows to move to the adjacent Street View locations. (b) Switching 

to the Labeling Mode allows them to label curb ramps, missing curb ramps, obstacles, surface 

problems, and other accessibility features. .............................................................................. 157 
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Chapter 1 Introduction 

Poorly maintained sidewalks pose considerable accessibility challenges for people with 

mobility impairments [127,129]. According to the most recent U.S. Census (2010), 

roughly 30.6 million adults have physical disabilities that affect their ambulatory 

activities [185]. Despite comprehensive civil rights legislation for Americans with 

Disabilities, many city streets, sidewalks, and businesses in the U.S. remain 

inaccessible (e.g., [43,65,85]). For example, maintenance issues such as buckled or 

cracked sidewalks can pose significant accessibility challenges so too do larger, more 

permanent infrastructural issues such as utility poles or fire hydrants directly in 

sidewalk paths or the lack of curb ramps at intersections or sidewalks (Figure 1.1). 

These issues are significant. In a precedent-setting court case in 1993, the court ruled 

that the “lack of curb cuts is a primary obstacle to the smooth integration of those with 

disabilities into the commerce of daily life” and that “without curb cuts, people with 

ambulatory disabilities simply cannot navigate the city” [1]. 

 
Figure 1.1.  In this dissertation, we describe the methods that combines crowdsourcing, online map imagery, 

and automated methods to semi-automatically locate, identify, and assess accessibility problems in the built 

environment. The images above show crowd annotations from the experiments on Mechanical Turk where 

minimally trained crowd workers were asked to find, label, and rate the severity of sidewalk accessibility 

obstacles in Street View images. 
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The problem is not just that sidewalk accessibility fundamentally affects where 

and how people travel in cities, but also that there are few, if any, mechanisms to 

determine accessible areas of a city a priori. Indeed, in a recent report, the National 

Council on Disability noted that they could not find comprehensive information on the 

“degree to which sidewalks are accessible” across the U.S. [132]. 

 Methods to identify (in)accessible areas of an unfamiliar places is important for 

people with mobility impairments. Knowing where and what barriers exist can help 

affected travelers mitigate, prevent, or better prepare for accessibility problems in the 

built environment [21,127,135,167]. While prior research has identified common 

strategies that people with mobility impairments use to evaluate the accessibility of 

routes and destinations a priori (e.g., seeking trip advice from caregivers [135,167]), 

we have limited knowledge about the role of modern and future interactive technology 

in informing travel-related decisions. In our own formative interview study with people 

with mobility impairments (Chapter 3), we show that location-based technologies that 

specifically incorporate accessibility information about the physical environment—

what we call assistive location-based technologies (ALTs)—could indeed be useful and 

desired. The critical challenge to enable such technologies is to collect comprehensive 

data about the accessibility of the physical environment—a key contribution of this 

dissertation. 

Traditionally, sidewalk assessments have been conducted via in-person street 

audits by government or volunteers [171,172], which are labor intensive and costly 

[157], or via citizen call-in reports, which are done on a reactive basis [220]. And, 
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although some cities offer sidewalk information online (e.g., through government 311 

databases [178]), these solutions are not comprehensive, rely on in situ reporting, and 

are not focused on collecting and providing accessibility information. The lack of data 

collection methods and the consequent lack of readily available sidewalk accessibility 

information limit us from designing and developing technologies to inform people 

about the city’s accessibility [195].  

To address this problem, this dissertation research introduces new scalable 

methods for remotely collecting data about street-level accessibility using a 

combination of crowdsourcing, automated methods, and Google Street View (GSV). 

For example, we evaluate whether we can efficiently locate curb ramps by tagging 

Street View images by combining computer vision-based object detection algorithms 

with crowdsourcing-based manual image labeling. The collected accessibility 

information could enhance capability of location-based technologies. For example, 

developers could enhance and incorporate neighborhood accessibility information into 

GIS tools that are used for urban analysis and policy making (e.g., AMELIA [119]). 

Accessibility-aware way-finding applications (e.g., MAGUS [127]) that have been 

available only in areas where such data existed (often with in situ data collection by 

government or researchers) could be deployed at much larger scale. These tools could 

change the way people view how friendly their neighborhoods are to mobility impaired 

people, transform the way they choose where to live, how governments plan and 

execute constructions and alteration of urban accessibility features, and could even 
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influence the property values just like technologies to assess walkability of 

neighborhoods could influence real estate values [44,56]. Although the primary 

contribution of my dissertation is new scalable data collection methods for sidewalk 

accessibility, we also create proof-of-concept ALTs such as an online visualization tool 

that help demonstrate the value of the collected data (Figure 1.2). 

1.1 Dissertation Research Approach and Overview 

This dissertation describes four threads of research. First, we conduct an exploratory 

interview study with 20 people with mobility impairments. The interview study allows 

us to explore current strategies of mobility impaired individuals for assessing built 

environment accessibility as well as reveals a broad range of future designs and 

requirements of ALTs. We then introduce and study novel crowd-powered methods for 

collecting street-level accessibility data that enable the future ALTs. In the next two 

chapters, we design, develop, and evaluate systems that combine crowdsourcing, 

 
Figure 1.2. To demonstrate the utility of the street-level accessibility data collected by our methods, we 

create a proof-of-concept choropleth map, Access Map, that visualizes accessibility levels of 

neighborhoods in Washington, D.C. Mobility impaired travelers could use Access Map to quickly assess 

which neighborhoods are accessible and inaccessible. 
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automated methods, and GSV to scalably collect street-level accessibility data. In the 

last research thread, we demonstrate the value of the data collection methods and the 

collected accessibility data. We develop a volunteer-based data collection tool and 

deploy it, and we design and develop proof-of-concept ALTs using the collected street-

level accessibility data. We describe each thread in detail below. 

1.1.1 A Formative Interview Study with Mobility Impaired People 

Previous work in urban design, public health, and assistive technologies have identified 

accessibility barriers such as lack of curb ramps, narrow and obstructed sidewalks, and 

poor travel surfaces [14,21,127,129,152]. However, little research has investigated how 

people with mobility impairments currently adapt to accessibility barriers. To build a 

better understanding of how people with mobility impairments assess the accessibility 

of the built environment and the roles of technologies therein, we conduct a formative 

interview study with 20 people with mobility impairments. The study involves three 

parts: a semi-structured interview (Part 1), a participatory design session (Part 2), and 

a design probe activity (Part 3).  

 The semi-structured interview in Part 1 was designed to investigate current 

methods and tools that people use to plan trips and assess the accessibility of the built 

environment. Findings from Part 1 reinforce and extend previous research in how 

people with mobility impairments assess accessibility [21,135,167]. We found that, 

while planning trips remains a challenge, modern location-based technologies support 

people with mobility impairments—even if not designed specifically for that purpose. 
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For example, participants found satellite and Street View imagery helpful to gauge the 

accessibility of their travel routes and destinations. 

Part 2 and 3 of the study were designed to extract the key desired functionalities 

of future ALTs. In Part 2, we design and develop three scenarios where ALTs could 

potentially be used—exploration of neighborhood accessibility, accessibility-aware 

location search, and accessibility-aware navigation. The scenarios are used to guide the 

participants in ideating and sketching the designs of future ALTs.  In Part 3, we elicited 

feedback on 12 paper mockups of ALTs that we prototyped. Part 2 and 3 elicited ten 

key design features (e.g., accessibility-aware location search) for ALTs and six 

important data qualities for accessibility information (e.g., credibility). These findings 

were important to guide the design directions of the remainder of this dissertation 

research. Our accessibility data collection methods use GSV to collect highly granular 

street-level accessibility information to enable assistive features, such as street-level 

accessibility visualization and accessibility-aware routing, that are desired by people 

with mobility impairments. 



 

 

7 

 

1.1.2 Crowdsourced Accessibility Data Collection Method 

We design, develop, and evaluated the novel crowdsourced accessibility data collection 

method that combines crowdsourcing and GSV. We develop a web labeling system 

that uses a manually curated database of Street View images (Figure 1.3). Using this 

tool, we investigate the feasibility of using minimally trained crowd workers from 

Amazon Mechanical Turk to find, label, and assess sidewalk accessibility problems in 

these images. 

Chapter 4 reports on three studies. Exploratory Study presents a preliminary 

experiment examining benefits and limitations of three designs of labeling interfaces. 

Study 1 examines the feasibility of this labeling task with six dedicated labelers 

including three wheelchair users and three researchers. The study shows that motivated 

workers can indeed find and label accessibility features in Street View images. Finally, 

Study 2 investigates the comparative performance of turkers. In all, we collected 13,379 

labels and 19,189 verification labels from a total of 402 turkers in Study 2. We show 

that turkers are capable of finding and labeling an accessibility problem correctly with 

81% accuracy. With simple quality control methods, this number increases to 93%. 

 
Figure 1.3. Our initial web-based Street View image labeling tool. Labeling images is a three step process 

consisting of outlining the location of the sidewalk problem in the image, categorizing the problem, and 

assessing the problem’s severity.  
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1.1.3 Semi-Automated Method to Collect Accessibility Data 

The sole reliance on paid-human labor for collecting street-level accessibility data can 

be insufficiently scalable and it remains expensive for creating a large dataset [97]. 

Building on the work in Chapter 4, we present the first “smart” system, Tohme, that 

combines machine learning, computer vision, and custom crowd interfaces to find curb 

ramps remotely in GSV scenes. Our approach automatically evaluates the performance 

of computer vision algorithm and adaptively switch workflow of crowdsourcing tasks 

based on the predicted computer vision performance.  Using 1,086 Street View scenes 

(street intersections) from four North American cities and data from 403 crowd 

workers, we show that Tohme performs similarly in detecting curb ramps compared to 

a manual labeling approach alone (F-measure: 84% vs. 86% baseline) but at a 13% 

reduction in time cost. Our work contributes the first computer vision-based curb ramp 

detection system, a custom machine-learning based workflow controller, a validation 

of GSV as a viable curb ramp data source, and a detailed examination of why curb ramp 

detection is a hard problem along with steps forward. 

1.1.4 VGI Data Collection System and Proof-of-Concept ALTs 

Finally, we (i) develop, deploy, and evaluate a volunteered geographical information 

(VGI) system for collecting the street-level accessibility data, and (ii) design and 

developed two proof-of-concept ALTs to demonstrate the value of the accessibility 

data collection methods and the street-level accessibility data collected with the VGI 

system. Informed by our four-year iterative design experience building GSV-based 
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accessibility data collection tools, we design and develop a VGI system to collect the 

street-level accessibility data. Between June and July, we invite volunteers via word-

of-mouth and asked them to audit the accessibility of the streets in D.C. As of writing 

this dissertation, we collected street-level accessibility data from 20% of the streets in 

Washington, D.C. We conduct a preliminary evaluation of the accuracy of the collected 

accessibility data and show that the overall accuracy of the collected data is 77%.  

We show the collected accessibility data’s utility via embodiment of two 

technologies: an online map tool that visualizes Washington, D.C.’s street-level 

accessibility levels, and the spatial analysis that investigate relationship between 

neighborhoods’ accessibility levels and other neighborhood characteristics like 

ethnicity and income levels. 

1.2 Summary of Contributions 

In summary, contributions of this dissertation are:  

 Identification of methods that people with mobility impairments use to assess 

the built environment accessibility and the roles of technologies therein 

(Chapter 3). 

 Identification of ten key design features and six data qualities of future assistive 

location-based technologies (Chapter 3). 

 Design and development of crowdsourcing system to collect street-level 

accessibility data from GSV (Chapter 4). 

 Evaluation of the crowdsourcing system that shows the feasibility of collecting 
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street-level accessibility data from GSV (Chapter 4). 

 Design and development of a semi-automated system that combines 

crowdsourcing, computer vision-based object detection algorithm, and a 

“smart” workflow controller that semi-automatically and efficiently detect curb 

ramps in Street View images (Chapter 5). 

 Evaluation of the semi-automated system for detecting curb ramps; we showed 

that we can improve the efficiency of data collection by 13% without sacrificing 

data collection accuracy (Chapter 5). 

 Design, development, and preliminary deployment of volunteer-based 

accessibility data collection platform that explores the efficacy of volunteer-

based accessibility data collection (Chapter 6). 

 Demonstration of two proof-of-concept ALTs, Access Map and accessibility 

analytics that show the value of the accessibility data collection methods and 

the collected street-level accessibility data (Chapter 6). 

1.3 Thesis Outline 

Chapter 2 provides background around the built environment accessibility and situate 

this dissertation research in existing body of work in crowdsourcing and automated 

methods to collect data. Chapter 3 describes our formative interview study. Chapter 4 

summarizes our work on designing and evaluating crowdsourced street-level 

accessibility data collection methods. Chapter 5 describes the design, development, and 

evaluation of Tohme—a semi-automated system that efficiently collect curb ramp data 
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from GSV. Chapter 6 describes the volunteered data collection system and the design 

and development of proof-of-concept ALTs. Chapter 7 reviews the contributions of the 

dissertation and puts forth remaining challenges in scalably collecting accessibility 

information of the built environment and potential future research directions. 
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Chapter 2 Background and Related Work 

In this chapter, we discuss background and related work that are most relevant to this 

dissertation. First, we survey literature on street-level accessibility, including: 

guidelines for accessible sidewalk/streetscape design, people’s coping strategies to 

overcome inaccessible areas, existing methods/tools to assess the built environment 

accessibility, and neighborhood (accessibility) audit methods. We then survey research 

on crowdsourcing, especially the topics related to crowdsourced image labeling and 

volunteered geographic data collection. Finally, we discuss automated methods for 

increasing data collection efficiency with a focus on technologies that our work builds 

upon (i.e., computer vision and machine learning-based smart task allocation). 

2.1 Sidewalk Accessibility 

This section describes the following aspects of street-level accessibility. First, we 

review what sidewalk and street attributes impede or facilitate mobility for people with 

disabilities. This information helps inform what accessibility features should be 

identified in Google Street View (GSV) imagery with the accessibility data collection 

methods that we design. Second, we review literature on how people with mobility 

impairments currently assess accessibility of the built environment prior to their travel. 

Third, we explore what applications and services currently exist to serve accessibility 

information to people with mobility impairments to identify their advantages and 

limitations. Finally, we look into current practices around how the accessibility 
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information about the built environment is collected and compare with our accessibly 

data collection methods. 

2.1.1 Sidewalk Accessibility Barriers and Facilitators 

Poorly maintained sidewalks pose considerable accessibility challenges for people with 

mobility impairments [127,129]. Research in public health and urban planning has 

studied and identified problems such as missing curb ramps and poorly maintained 

sidewalk surfaces negatively affects sidewalk accessibility 

[14,21,71,127,129,152,164,184]. For example, Meyers et al. [129] provides a 

comprehensive list of what constitutes a barrier to navigation. Through telephone 

interviews and 28 daily telephone contacts, Meyers identified what wheelchair users 

perceived as accessibility barriers and facilitators in their daily lives such as presence 

and absence of curb ramps (e.g., lack of curb cuts, obstructed travel paths)—See Table 

2.1. This body of prior work informs what accessibility needs to be collected and thus 

inform the design of our system. Note that while Meyers identified significance of other 

environmental features (e.g., indoor accessibility barriers like narrow corridors), this 

dissertation focuses on collecting information about the outdoor environment. In 

Chapter 7, we discuss potential methods for collecting accessibility information in 

indoor environments as future work. 

 In the U.S., the Americans with Disability Act (ADA) of 1990 [191] and its 

revised regulations, 2010 ADA Standards for Accessible Design (2010 Standards) 

[189], mandates that new construction and alterations of the built environment be free 
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of the aforementioned accessibility barriers and readily accessible for everyone. Rules 

regarding sidewalk environment are described in Title II and Title III of the 2010 

standards. Under the Title II, 28 CFR (Code of Federal Regulations) part 35.151 notes 

that:  

Newly constructed or altered streets, roads, and highways must 

contain curb ramps or other sloped areas at any intersection having 

curbs or other barriers to entry from a street level pedestrian 

walkway, […and] newly constructed or altered street level 

pedestrian walkways must contain curb ramps or other sloped areas 

at intersections to streets, roads, or highways.”  

2004 ADA Accessibility Guidelines (ADAAG) Chap. 4, Title III provides 

directions for the design of sidewalk attributes. For example: (i) accessible walking 

Environmental  Indoor Built Environment Outdoor Built Environment Other 

Bad weather or climate Door handles or pressure No curb cuts or blocked cuts Wheelchair problems 

No public transportation No ramps or ramps too steep No parking 
Distance or time (too far to 

travel) 

Traffic (e.g., no crossings) Narrow aisles Travel surfaces (grass, mud, ice) No assistive technology 

Landscape (e.g., hills or streams) Inaccessible bathrooms Obstructed travel * Assistive technology 

Pedestrian traffic Broken elevators or lifts or none High curbs  

Air quality 
Counter heights (desks, 

restaurants) 
* Adaptations (curb cuts, special 

parking)  
 

Unsafe neighborhoods Door width * Accessible parking  

* Accessible transportation 
Fixed seating (No space for 

chairs) 
  

* Good weather Floors, floor covering, thresholds   

* Level or graded terrain * Adaptations (ramps, doors)   

Table 2.1. Meyers et al. surveyed a comprehensive list of accessibility barriers and facilitators [129]. This 

dissertation is focused on collecting outdoor accessibility information from GSV. A discussion about methods 

of identifying other accessibility features will be discussed in the Future Work section. Asterisks (“*”) indicate 

facilitators. The grouping is by the author. 
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surfaces (e.g., sidewalk segments) should be at least 36 inches (915 mm) wide so that 

wheelchair users can pass through (but the clear width shall be permitted to be reduced 

to 32 inches (815 mm) minimum for a length of 24 inches); (ii) at least 36 inches of 

landings at the tops of curb ramps should be provides (Figure 2.1). 

To improve the public agencies’ compliance with ADA, the regulation 

mandates the public agencies with more than 50 employees to make a transition plan 

to improve the accessibility of the built environment (28 CFR §35.150(d)). The plan 

should accomplish the following four tasks:  

(i) Identify physical obstacles in the public entity's facilities that limit 

the accessibility of its programs or activities to individuals with 

disabilities; (ii) Describe in detail the methods that will be used to 

make the facilities accessible; (iii) Specify the schedule for taking the 

steps necessary to achieve compliance with this section and, if the 

time period of the transition plan is longer than one year, identify 

steps that will be taken during each year of the transition period; and 

(iv) Indicate the official responsible for implementation of the plan.  

Even then, many city streets and sidewalks do not meet requirements of 

inclusive design guidelines for the built environment (e.g., [102,122,188]) and remain 

 

Figure 2.1. Examples of ADA regulations regarding sidewalk accessibility attributes. (a) The regulations 

ruled that accessible walking pass to have at least 36 inches wide. (b) Enough clearing spaces should be 

provided at both ends of curb ramps. 
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inaccessible for people with mobility impairments after more than two decades of the 

enactment of ADA. Causes of unmet accessibility needs vary; the reasons include the 

lack of funding to update the infrastructures, political difficulties in obligating property 

owners to repair sidewalks, as well as its speed of update (e.g., [43,65,85]). 

As noted in the introduction, however, the problem is not just that there are 

inaccessible areas in the city, but it is also that there are few mechanisms to determine 

accessible areas of a city a priori [135,195]. In fact, in a recent report, the National 

Council on Disability noted that they could not find comprehensive information on the 

“degree to which sidewalks are accessible” across the US [132]. The goal of this 

dissertation research is precisely to address this issue. We design the methods to collect 

street-level accessibility information that enable technologies that inform city sidewalk 

accessibility and support people with mobility impairments. 

2.1.2 Coping Strategies for Navigating Inaccessible Built Environment 

The existing body of work has identified how people currently cope with the 

aforementioned accessibility barriers. Prior work suggests that people with mobility 

impairments rely on their own heuristics [21] or get advice from access consultants 

[135,167] to find accessible routes. For example, Sobek and Miller described that the 

Center for Disability Services in their university uses a combination of paper maps and 

expert knowledge to assist individuals in finding accessible routes between campus 

origins and destinations [167]. While the service is helpful, the strategy is not always 

available. Through interview and survey studies, Bromley et al. uncovered that people 
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with mobility impairments tend to employ avoidance tactics [21]. They choose to go 

to accessible areas and stores that they already know and adapt the timing of their travel 

to avoid crowds based on their heuristics [21]. However, the strategy is only effective 

when one is familiar with the accessibility of the built environment. Accessibility aware 

navigation tools could complement the strategy, but they are not widely available 

[176,186].  

A limited body of work has investigated how people use location-based 

technologies to assess accessibility of the physical environment. One notable work is 

from Andrea Nuernbergeer’s dissertation research in the mid-2000s [135]. Nuernberger 

studied then-current technological methods and explored desired technical solutions 

for finding and assessing accessible routes with 20 mobility impaired people [135]. She 

studied features desired in the future accessibility-aware navigation tools. While 

informative, Nuernberger focused specifically on navigation tools with less focus on 

other location-based technologies (e.g., location search). Moreover, Nuernberger’s 

work was conducted in 2005. Given the recent advent of widely available digital maps 

and GPS-equipped smartphones, it is appropriate to reinvestigate how people use 

technologies to support their trip planning, and extend the research by exploring 

designs of a wider variety of assistive location-based technologies. In chapter 3, our 

formative interview study extends this body of work by introducing how people with 

mobility impairments use modern location-based technologies to assess the built 

environment accessibility and what future technologies they desire.  
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2.2 Existing Accessibility-aware Map Tools 

Accessibility-aware map tools such as navigation systems for people with mobility 

impairments have been available only in limited regions. This is because the street-

level accessibility data that is necessary to implement these technologies could not be 

easily obtained. Our accessibility data collection methods could transform the way the 

data is collected and served, thereby enable these tools much more pervasively. In this 

section, we introduce the prior research and development of accessibility-aware 

navigation systems, point-of-interest (POI) search tools, and GIS analytic technologies. 

We then discuss how the collected accessibility data could transform these tools. 

2.2.1 Accessibility-aware Navigation 

Recently, prototype accessibility-aware navigation tools have been designed. Matthews 

et al. and Church et al. built map tools to compute accessible routes for wheelchair 

users in urban areas [37,127]. Later, similar systems were designed by various 

researchers (including successors to Matthew et al.’s tool; e.g., [14,53,137,209,221]). 

More recently, there have been publicly available web applications like Handimap 

(www.handimap.org) that compute and show accessible routes for wheelchair users. 

These tools have been only available in the areas where the accessibility data can be 

readily obtained (e.g., cities where government provides the accessibility data). Street-

level accessibility data collected via our data collection methods could make these 

navigation tools available to every city where GSV is available. 
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2.2.2 Accessibility-aware POI Search 

Goh et al. suggested that services that allow users to assess accessibility of a given 

point-of-interest (e.g., a store, restaurant) could be useful for people with disabilities 

[52,68,69]. People with mobility impairments could use the services to identify whether 

the places are navigable. Such services are emerging recently. Ding et al. surveyed web 

applications that allow users to search accessible points-of-interest such as Wheelmap 

(wheelmap.org) and Factual (factual.com) [52]. Another similar example is AXSMap 

(axsmap.com). These tools, however, focus on identifying accessibility of the building 

façade and/or indoor accessibility (e.g., entrance accessibility) and do not take into 

account of sidewalk accessibility around the points-of-interest which impact people’s 

access to reach the destinations. The street-level accessibility data collected from GSV 

 

Figure 2.2. Walk Score visualization. Walk Score quantifies the city’s walkability by assessing proximity to 

important amenities (e.g., grocery stores). Green areas represent walkable regions and red areas indicate less 

walkable areas.  
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with our methods could complement these applications by presenting street-level 

accessibility around points-of-interest. 

2.2.3 GIS-based Analysis Tools 

Recent advancement in GIS tools reduced the barriers to conduct geographical analysis 

of neighborhood characteristics [28,56,98,143,156,222]. For example, Walk Score 

(Figure 2.2), an online tool that offers an easy-to-understand visualization of 

walkability of neighborhoods, has been used in public health research to gauge 

neighborhood quality (e.g., presence of nearby parks) [28,56,98,222]. Walk Score 

evaluates walkability of neighborhoods by assessing the presence and proximity of 13 

types of amenities (e.g., grocery stores) using the data collected from Google Maps. 

These technologies, however, rely on publicly available GIS data—often selected 

based on priorities of either private entities or local administrative bodies [157]. This 

limits generalizability of the techniques—the data often does not include street-level 

accessibility information. This is exactly what this dissertation tries to solve by 

introducing new scalable methods of data collection using remote crowdsourcing, 

automated methods, and GSV. To show the value of the collected accessibility data, 

Chapter 6 of the dissertation introduces a Walk Score-like metrics and visualization 

that incorporate accessibility information. 
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2.3 Existing Sidewalk Assessment Methods 

In this section, we compare and contrast our street-level accessibility data collection 

methods with existing neighborhood auditing methods.  

2.3.1 Physical Accessibility Audit 

Traditionally, in-person neighborhood audits are conducted by local government or 

volunteer organizations [171,172]. According to one of the audit guidelines [171], 

neighborhood audits involve inspection of various aspects of neighborhood qualities, 

which include sidewalk accessibility. While thorough assessments could elicit detailed 

data about neighborhood environment, in-person audit is time-consuming and its in-

situ nature limits the areas where auditors can visit. It also requires a local organizing 

body to manage inspection personnel, which further limits scalability. In addition, the 

data collected via physical audit is not always accurate. For example, the information 

about curb ramp locations (Figure 2.3) collected and distributed by Washington, D.C. 

government contains some errors as shown in Figure 2.4. The street-level accessibility 
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data collected via our data collection methods could be used to cross-reference against 

the physical audit data to figure out potential locations where errors exist or be used as 

the primary data collection method (especially for city government that does not track 

and publish their street-level accessibility data). Furthermore, our data collection 

 

Figure 2.3. The curb ramp location data of Washington D.C. that has been collected and distributed by the 

D.C. government. The top image shows a raw aerial image of the D.C. area and icons in the bottom image 

shows placement of curb ramps. 
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methods allow us to gather not only the curb ramp data, but also other accessibility 

features like missing curb ramps, sidewalk obstacles, and surface problems.  

 Distributed in situ crowdsourcing could alleviate the cost of organized 

neighborhood auditing. Participatory reporting of neighborhood issues has been 

accomplished through web and mobile applications (e.g., [27,220]). For example, 

SeeClickFix allows citizens to report non-emergency neighborhood issues to local 

government agencies anytime [220]. The emergence of these tools has enabled 

unorganized neighborhood audits without a central organizing body; people can 

provide neighborhood information anytime. While SeeClickFix focuses on collecting 

general neighborhood information, applications such as Wheelmap.org [223], 

 

Figure 2.4. Examples of errors in the official curb ramp geographical data of Washington, D.C.: (a) although 

the official data indicates the presence of a curb ramp, there is no curb ramp in the real world; (b) the official 

data indicates that there is no curb ramp, but in fact there is a curb ramp at this intersection as we found 

through our own physical audits of these areas. 
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Axsmap.com [224] focus on collecting information about accessibility of facilities (e.g., 

presence of accessible entrances at restaurants) and other research prototypes focus on 

collecting sidewalk accessibility (e.g., [88,128,148,196]). For example, a prototype 

system that Holone et al. developed allows people to collaboratively rate accessibility 

of outdoor locations, and the system also inform wheelchair users accessible routes 

using the collaborative collected data [88]. Even then, however, the in situ nature of 

physical audits tend to be time-consuming and labor intensive [39,143]. The coverage 

of audit data is also limited to the areas where users of the systems can travel. Unofficial 

audits may also be perceived by local residents as intrusive and can involve safety 

problems for auditors [29]. Finally, remote accessibility audits conducted by human 

workers can potentially be substituted by computer algorithms in the future as we 

discuss in Chapter 5. Therefore, one goal of this dissertation is to provide a remote 

auditing methods and tools that use GSV to complement the physical auditing 

techniques. See Table 2.2 for the summary of the benefits and limitations of remote 

and physical accessibility audits.  
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2.3.2 Inferring Sidewalk Accessibility from People’s Movements 

Alternative methods that incorporate people’s contribution via natural activities could 

alleviate the labor-intensive nature of the in-situ techniques described above. For 

example, Kasemsuppakorn et al. [101] and Palazzi et al. [137] analyses GPS trajectory 

data of people’s mobile phone to infer placement of sidewalks and potentially 

accessible routes. More recently, developers from Mapbox (www.mapbox.com) 

demonstrated the use of data from RunKeeper, a popular self-tracking mobile-

application for runners, to map placement of sidewalks [130]. While these solutions 

may allow us to collect information of sidewalk connectivity, they are not readily 

scalable beyond the areas that people travel to (e.g., some routes cannot be accessed 

because of street-level impediments). And, more importantly, analyzing GPS 

trajectories would only inform path connectivity and not accessibility. That is, people 

may travel on streets along with driving vehicles even there aren’t accessible sidewalks.  

 Physical Auditing Remote Auditing 

Audit Efficiency 
Physical audits are time-consuming and expensive 
to conduct largely because of the costs of travel 
[15,29,39,157]. 

Remote accessibility audits using Street View 
imagery are less time-consuming as there is no 
need for trave. 

Audit Detail 
Able to measure accessibility features’ 
characteristics that are hard to observe solely from 
pictures [39]. 

Caution should be exercised when gathering more 
finely detailed observations (e.g., width of 
sidewalks) that benefit from observation and 
measurement in the field [15,39] 

Intrusiveness 
Physical audits that involve surveying, taking 
photos, and/or videotaping may be perceived as 
intrusive by local residents [29,157]. 

Remote accessibility audits using existing GSV data 
is less intrusive. 

Auditor Safety 

Physical audits could involve safety problems for 
research stuff [157]. Data collection via citizen 
participation (e.g., SeeClickFix) could be hampered 
in areas that are perceived dangerous as people get 
discouraged to walk [117]. 

Remote accessibility audits using GSV do not 
involve safety issues.  

Computer Vision 
Survey data collected from physical auditing cannot 
be used to train computer vision algorithms. 

Accessibility features labeled in GSV could be used 
to train computer vision algorithms [83,84]. 

Table 2.2. Summary of benefits and limitations of physical and remote accessibility audits.  
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Monitoring natural activities of wheelchair users could provide geographical 

data that is applicable to assistive location-based technologies. Researchers have 

augmented wheelchairs with motion sensors [93,94]. For example, Iwasawa et al. 

mounted iPod Touches with built-in accelerometers on wheelchairs of nine study 

participants with mobility impairment [93]. Using the tracked data from the motion 

sensors and an off-the-shelf machine learning algorithm, they showed that it is feasible 

to collect some sidewalk accessibility information such as surface conditions. Again, 

however, the method is only scalable up to the areas that people travel to. This could 

be problematic as wheelchair users would use their heuristic to avoid inaccessible 

neighborhoods, which reduces the opportunities to collect data from inaccessible 

neighborhoods.  

2.4 Virtual Street Audit using Google Street View 

We were not the first to think of using GSV as a virtual audit medium for cities—

indeed, some early work in public health and urban studies began using GSV to assess 

the neighborhoods’ built characteristics [11,15,39,157]. For example, Badland et al. 

investigated feasibility of collecting data related to walking function and cycling 

function (e.g., walking/cycling surface condition) [11]. Ben-Joseph et al. assessed 

agreement between physical audit and virtual audit data about levelness and condition 

of sidewalks [15]. As an emerging area of research, work thus far has focused on 

assessing the validity of GSV as a data source (e.g., assessing effect of data age). 

Importantly, high levels of concordance have been reported between audit data 
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collected using GSV versus more traditional means for measures including pedestrian 

safety, motorized traffic and parking, and pedestrian infrastructure [11,157]. GSV has 

been validated as a useful dataset for a range of foci within the built environment. Our 

work reinforced these finding by showing that GSV is a good data source for built 

accessibility features like presence and absence of curb ramps [77,78,84]. 

Although strongly related, this dissertation research is different in that we 

explore the use of minimally trained paid crowd workers and volunteer workers to 

perform street-level accessibility audit using custom data collection tools. Our work 

also investigates efficacy of incorporating automated methods to automatically detect 

sidewalk accessibility features and optimize crowd task workflow to efficiently collect 

the data.  

2.5 Remote Physical Environment Data Collection 

In this section, we discuss two areas from the crowdsourcing literature that are highly 

related to our data collection methods: crowdsourcing image labeling and volunteered 

geographic information (VGI).  

2.5.1 Crowdsourced Image Labeling 

The image labeling tasks in our crowdsourced accessibility data collection methods are 

analogous to that commonly performed in computer vision research for image 

segmentation, object detection and object recognition [159,210]. Since manually 

building a large dataset of annotated images for training computer vision algorithms is 
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expensive and time consuming [159], web-based image labeling tools have been 

developed to capitalize on the large user population accessible over the Internet (e.g., 

[4,5,6,159]). For example, in von Ahn et al.’s work, textual labels are provided for 

images through a clever collaborative game-with-a-purpose, where users provide 

captions to describe objects in an image [4] or draw bounding boxes around specific 

items [5]. LabelMe [159] provides more granular segmentation by allowing users to 

draw polygonal-outlines around objects. While the previous tools relied on volunteers, 

Sorokin and Forsyth [168] experimented with “outsourcing” this task to Mechanical 

Turk, showing that a large number of high quality image annotations could be acquired 

relatively cheaply and quickly. Since then, image detection and annotation have 

become a common task in crowdsourcing platforms and produced datasets used in 

computer vision communities (e.g. ImageNet [50], Caltech-UCSD Birds 200 [201]).  

For our data collection methods, image labeling efficiency is contingent on 

crowd workers’ speed and accuracy in processing Street View images. Prior work 

exists in studying how to efficiently collect image labels (e.g., [51,108,173]). Su et al. 

investigated cost-performance tradeoff between majority vote based labeling and 

verification based data collection [173], finding quality control via verification 

improves cost-effectiveness. Recent work by Deng [51] explored methods of 

efficiently collecting multiclass image annotations by incorporating heuristics such as 

correlation, hierarchy, and sparsity (e.g., the presence of a keyboard in an image also 

suggests the presence of correlated objects such as mouse and monitor). Krishna et al. 

introduced methods that increase the efficiency of binary and multi-class image 
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labeling by an order of magnitude by (i) forcing the crowd workers to label images 

quickly, to the extent that they make mistakes, and (ii) automatically correcting labeling 

mistakes post-hoc by modeling the errors [108]. While crowd-powered image labeling 

research is relevant to our work, it is different not only in focus (i.e., finding 

accessibility features) but also in the unique integration of GSV, crowdsourcing, and 

computer vision for scalably collecting sidewalk accessibility information. 

The cost of data colleciton could be further reduced by getting contributions 

from volunteers. The last decade has seen significant developments in online citizen 

science applications such as the range of Zooniverse projects (www.zooniverse.org). 

In many of the projects (e.g., Galaxy Zoo [114,204,218], Snapshot Serengeti [219]), 

images that are hard for computer algorithms to process are presented to volunteers to 

categorize and annotate. The image processing tasks that volunteers are asked to 

complete are simple enough that members of the public can engage meaningfully with 

minimal training [45]. These projects showed that it is feasible to motivate volunteers 

to contribute to data collection tasks for a scientific purpose. Although motivation of 

the projects are different from ours (i.e., scientific exploration vs. accessibility) and our 

data collection methods involve arguably more complex interactions (e.g., navigating 

in GSV environment), we follow the approach of above projects and develop a 

volunteer-based data collection system, then report on the small-scale deployment of 

the system in Chapter 6. 

http://www.zooniverse.org/
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2.5.2 Volunteered Geographic Information 

The goal of this dissertation work aligns with existing efforts of collaboratively 

mapping the world’s geographical information using web tools, the research field 

known as volunteered geographic information (VGI) or geographic volunteer work 

[141]. OpenStreetMap (OSM), arguably the most successful VGI project, aims to 

create a set of map data that is free to use and editable for everyone [74,75,76]. In his 

dissertation work, Priedhorsky developed Cyclopath, a web-based mapping application 

serving the route finding needs of bicyclists in cities in Minnesota [140,141,142]. 

Similar to OSM, Cyclopath allows any bicyclists to collaboratively provide and edit 

bicycle route information online. OpenStreetMap had approximately 2,800,000 

registered users as of July 2016 [230], and there were 2,184 registered users for 

Cyclopath as of 2011 [125]. These projects showed the viability and efficacy of 

eliciting contribution of many anonymous crowd workers to collect geographical 

information. Although similar in spirit, our work not only differs in the types of data 

collected (i.e., street-level accessibility information), but it also uniquely shows GSV 

is a viable source of geographical information, and introduce novel methods to 

combines crowdsourcing and automated methods to collect data from GSV. We also 

note that the potential users of our volunteer-based system such as wheelchair users 

and their caregivers would have self-serving intrinsic motivations (i.e., identifying 

accessibility own neighborhoods), which may improve their retention [134,153,160]. 

Though the quality of VGI data has been questioned, research has found that 

the data in VGI applications are comparable to more traditional proprietary/government 
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data [75]. Research around OpenStreetMap found that the accuracy of collected data 

was comparable to traditional geographical datasets that are maintained by national 

mapping agencies [75]. Quality control mechanism similar to those employed in 

crowdsourcing (i.e., majority consensus is used to maintain Wikimapia data [70]) as 

well as use of heuristics (e.g., POI data entry of a café in the middle of a historic park 

tend to be erroneous [70]) should not be present is also used to assure its data accuracy  

However, its coverage still falls behind that of other official dataset, especially in rural 

areas and in countries where OpenStreetMap is less popular [133]. This geographic 

data coverage bias is common in VGI [74,124,145]. In chapter 6, we investigate the 

 

Figure 2.5. WALKscope. The web interface shows a vector layer of the sidewalks (segments) and intersections 

(dots) in the city of Denver. In the data exploration window, the application visualizes low quality sidewalks 

and intersections in red and high quality ones in green. In the data editing window, online users can provide 

information about the quality of the sidewalks and intersections. 

 



 

 

32 

 

quality and quantity of data collected via our remote data collection methods to see if 

our volunteer-based methods are viable for collecting geographical information about 

street-level accessibility. 

 One notable application that has been launched recently is WALKscope [199]. 

WALKscope, a VGI application developed by WalkDenver, invites volunteers to 

provide five-point Likert scale information about sidewalk and intersection quality 

through a web interface. Its interface visualizes sidewalk vector layers on top of 

satellite imagery; a user can click a sidewalk segment and rate its quality, as well as 

provide metadata like presence of obstacles, surface quality, and presence of landmarks 

(e.g., benches). The added data is used to visualize sidewalk and intersection 

qualities—see Figure 2.5. While the focus of WALKscope is to provide useful data for 

pedestrians in general, the optional metadata about sidewalk obstacles and surface 

quality could be useful to inform the sidewalk accessibility for people with mobility 

impairments. The application, however, does not allow a user to see sidewalks from 

street-level (e.g., via Google Street View), which makes it hard to observe the quality 

of sidewalks and limits remote contributors’ ability to report sidewalk 

quality/accessibility. 

2.6 Increasing Scalability with Automated Methods 

Crowdsourcing accessibility data collection using GSV is labor intensive. Researchers 

in the crowdsourcing field believe that crowd-powered systems can be combined with 

automated methods to reduce the workload and increase productivity of the crowd work 
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[103]—an area of research that is often referred as human in the loop. Our work 

described in Chapter 5 relied on computer vision and machine learning-based automatic 

workflow controller to reduce cost of crowd work. Below, we discuss prior work in 

computer vision and automatic task allocation that our work builds upon. 

2.6.1 Computer Vision 

There is a growing body of research applying computer vision (CV) techniques to GSV 

[206,207,211,212,213]. For example, Xiao et al. introduced automatic approaches to 

model 3D structures of streetscape and building façades using GSV [206,207]. Zamir 

et al.[211,212,213] and Lin et al. [112] showed that large-scale image localization, 

tracking, and commercial entity identification are possible [113,211,212,213]. This 

work demonstrates the potential of combining computer vision with GSV. 

Varadharajan et al. developed computer vision system to track street condition from 

self-made image dataset similar to GSV to track cracked road surfaces [192]. However, 

research that focus on (semi-)automatically detecting accessibility features from online 

imagery has been limited. Notable exceptions are recent work by Ahmetovic et al. and 

Koester et al. [105] that introduced techniques that use computer vision algorithms to 

detect and localize crosswalks in satellite imagery in Google Maps and Street View 

imagery [3]. Ahmetovic et al. state in their paper that the collected crosswalk data could 

be used to populate geographical database to design assistive technologies to support 

people with visual impairments. This suggests increasing interests in using computer 

vision and online map imagery like GSV to populate geographical database.  
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Our work in semi-automatically detecting curb ramps builds on top of existing 

object detection algorithms from the CV community [48,62,194]. In our study, we used 

Deformable Part Models (DPMs) [62,63], one of the top performing approaches in the 

PASCAL Visual Object Classes (VOC) challenge, a major object detection and 

recognition competition [62]. Despite a decade-long effort, however, object detection 

remains an open problem [19,202]. For example, even the DPM, which won the 

“Lifetime Achievement” Prize at the aforementioned PASCAL VOC challenge, has 

reached 30% precision and 70% recall in ‘car’ detection [62]. 

2.6.2 Automatic Task Allocation 

Our semi-automated system uses machine learning to control the image labeling 

workflow for efficiently collecting data from GSV (Chapter 5). Typical workflow 

adaptions include: varying the number of workers to recruit for a task [99,202], 

assigning stronger workers to harder versions of a task [18,47] and/or fundamentally 

changing the task an individual worker is given [95,111]. These workflow decisions 

are made automatically by workflow controllers often by analyzing worker 

performance history, inferring task difficulty, or estimating cost.  

Most relevant to our work on semi-automated accessibility data collection is 

workflow adaptation research in crowdsourcing systems [99,111,202]. For example, 

Lin et al. and Welinder et al. rely on worker performance histories to either assign 

different tasks [111] or recruit different numbers of workers [202]. More similar to our 

work is [95,99] that infer task difficulty via automated methods and adapt work 
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accordingly. For example, Kamar et al. [99] analyzed image features with CV 

algorithms to predict worker behaviors a priori on image annotation tasks and used this 

to dynamically decide the number of workers to recruit. More recently, Gurari et al. 

introduced a framework that combines human-based and automated image 

segmentation [72]. In their framework, a prediction module predicts quality of 

automatic image segmentation; the module then decides to delegate image 

segmentation task to human or automatic segmentation.  

Though similar, our work is different both in the problem domain (i.e., finding 

accessibility attributes) as well as in approach. Rather than vary the number of workers 

per task, our workflow controller infers CV performance and decides whether to use 

crowd labor for verifications or labeling. In addition, we do not simply rely on image 

features or CV output to determine workflow but also contextual information such as 

intersection complexity and 3D-point cloud data. 

2.7 Summary 

This chapter has described background and related work of three areas of research that 

are most relevant to this dissertation. Our work complements and extends the existing 

sidewalk accessibility data collection methods by introducing novel ways to remotely 

collect street-level accessibility data from GSV. We surveyed the existing technologies 

that our data collection methods rely on, and how the techniques we designed differ 

from existing ones.   
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Chapter 3 Formative Interview Study 

In this chapter we describe a formative interview study with 20 people with mobility 

impairments. Our goal is to investigate the current methods that people with mobility 

impairments use to assess the accessibility of the physical environment and to explore 

the future design of assistive location-based technologies. This chapter is based on our 

CHI2016 publication [79]. 

3.1 Introduction 

Accessibility barriers in the built environment pose significant problems for people 

with ambulatory disabilities [21,26,65,71,91,127,129,152,177]. Knowing where and 

what barriers exist can help affected travelers mitigate, prevent, or better prepare for 

such problems [21,127,135,167]. Previous research has identified common strategies 

people with mobility impairments use to evaluate the accessibility of routes and 

destinations a priori (e.g., seeking trip advice from caregivers [135,167]); however, 

this work either occurred before the modern era of location-based technologies like 

GPS-enabled smartphones or did not focus on the potential role of technology.  

In this chapter, we investigate current methods and tools—both technological 

and non-technological—that people with mobility impairments use to evaluate the 

accessibility of the built environment (e.g., streets, businesses) as well as to plan and 

execute travel. Through participatory design, we actively engage our participants in 

brainstorming and designing the future of what we call assistive location-based 

technologies (ALTs)—location-based technologies that specifically incorporate 
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accessibility features to help people with impairments explore, search, and navigate the 

physical world. As exploratory work, our research questions include: What modern 

technologies do people with mobility impairments use to evaluate the accessibility of 

the built environment? What role does technology have in making decisions about 

travel—both a priori (e.g., when planning) and in situ (e.g., when moving about)? How 

could future technologies be designed to further improve the way they navigate the 

physical world? 

To address these questions, we conducted a three-part study with 20 mobility-

impaired participants: a semi-structured interview (Part 1), a participatory design 

session (Part 2), and a design probe activity (Part 3). The semi-structured interview was 

designed to investigate current methods and tools that people use to plan trips and 

assess the accessibility of the built environment. In Part 2, we designed and developed 

three ALT usage scenarios, which were used to help guide the participants in ideating 

and sketching new ALT designs: interactive exploration of neighborhood accessibility, 

accessibility-aware location search, and accessibility-aware navigation. In Part 3, we 

presented 12 researcher-prepared paper mockups of ALTs and elicited feedback. 

Findings from Part 1 reinforce and extend previous research in how people with 

mobility impairments assess accessibility [21,135,167]. We found that, while planning 

trips remains a challenge, modern location-based technologies support people with 

mobility impairments—even if not designed specifically for that purpose. For example, 

participants found satellite and Google Street View (GSV) imagery helpful to gauge 

the accessibility of their travel routes and destinations. Part 2 elicited ten key design 
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features (e.g., top-down maps of streets depicting accessibility information) for ALTs 

and five important data qualities for accessibility information (e.g., credibility, 

frequently updated data). During our design probe in Part 3, participants reacted 

positively to our mockup, especially glanceable visualizations of indoor/outdoor 

accessibility and accessibility-aware routing interfaces, and provided design 

suggestions. Another data quality emerged in Part 3. 

The contributions of this chapter include: (i) an examination of methods and 

modern tools that are used to assess the accessibility of the built environment; (ii) an 

analysis of ALT mockups designed by mobility impaired people;  

(iii) the first examination of the significance of data quality on ALTs; (iv) findings from 

mobility impaired people’s reactions to 12 envisioned ALT interfaces. By enumerating 

key features and data qualities of ALTs, our findings should inform the design of future 

location-based tools—both general tools such as Google Maps or Yelp as well as 

specialized tools such as WheelMap [223] or AXSMap [224]) aimed at the accessibility 

community. 

 

Figure 3.1. To explore how location-based technologies currently support users with mobility impairments 

as well as to examine desired future interfaces and uses, we conducted a three-part formative study with 20 

mobility impaired participants. Above, photos from (a) a semi-structured interview, (b) a participatory 

design activity, and (c) a design probe. 
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3.2 Method 

We conducted a three-part study with mobility-impaired participants: (i) a semi-

structured interview to inquire about current methods and tools that our participants use 

to support trip planning (Part 1; Figure 3.1a); (ii) a participatory design to elicit design 

and feature requirements of ALTs as well as their context of use (Part 2; Figure 3.1b); 

and (iii) a design probe activity to discuss designs and features of ALT paper prototypes 

designed by the researchers (Part 3; Figure 3.1c). Study sessions were audio and video 

recorded and transcribed by the members of the research team. 

We recruited 20 participants (14 female) on a rolling basis through local 

accessibility organizations, word-of-mouth, and email listservs. Participants were on 

average 43.7 year old (SD=18.0; range=19-77; Table 3.1) and from the Washington, 

 Sex Age Phone Technology Disability 
P1 F 48  Cane Cerebral Palsy (affects fine motor control of both hands and feet) 
P2 M 37  MW, EW Cerebral Palsy (weak legs, restricted to using a wheelchair) 
P3 M 48 SP MW Spinal Cord Injury (C5/6) 
P4 F 22 SP Scooter FSH Muscular Dystrophy 
P5 M 56 SP MW Spinal Cord Injury (L1/T12) 
P6 F 77  Cane Muscular weakening disease 
P7 F 42 SP Cane, Scooter Juvenile Rheumatoid Arthritis 
P8 F 72  Walker Damaged patella tendon 
P9 F 38 SP EW Muscular Dystrophy 
P10 F 72  Walker, EW Parkinson's disease 
P11 F 24 SP Scooter Spinal Muscular Atrophy (Type 3) 
P12 F 26  Walker, EW Cerebral Palsy (poor balance and no depth perception) 
P13 F 24 SP Cane, walker Diplegic Cerebral Palsy (affected muscle tightness in legs) 
P14 F 56 SP EW Multiple Sclerosis 
P15 M 52 SP Walker Cerebral Palsy, Knee injury 
P16 F 37  MW Cerebral Palsy 
P17 F 31 SP Walker, MW Spinal Cord Injury (T-6) 
P18 M 63 SP MW Spinal Cord Injury (T-11) 
P19 F 19 SP Cane, crutches Hip replacement 
P20 M 29 SP MW Spinal Cord injury (L-1) 

Table 3.1. Participant demographics. Here, we use: MW=Manual wheelchair, EW=Electric wheelchair, and 

SP to indicate participants who have smartphones. P16 was excluded due to a cognitive impairment that 

prevented her from fully participating.  
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D.C. area. To investigate potential differences in perspective and experience based on 

mobility level, we specifically recruited a range of participants [190]: 8 used electric 

wheelchairs/scooters, 7 used manual wheelchairs, and 10 used other manual assistive 

technologies (e.g., cane, walker). The total number (25) exceeds 20 as some 

participants used more than one assistive device—see Table 3.1. All participants had 

experience with using laptop/desktop computers and 13 had smartphones. Prior to the 

study session, participants were asked to fill out an online background survey. Due to 

a cognitive impairment, which prevented full participation, P16 is excluded from our 

analysis. Participants were compensated $15/hour for their time and travel.  

3.2.1 Part 1: Semi-structured Interview 

Part 1 of our study was aimed at uncovering: (i) what accessibility challenges people 

with mobility impairments face in the built environment and the significance of these 

challenges; (ii) the tools and methods they use to assess accessibility; and (iii) how the 

problems impact their decision and ability to travel. The interviewer initiated inquiries 

with a fixed set of questions. As new topics emerged in accordance with participant’s 

background, mobility level, and experience, participants were asked to elaborate on 

emerging topics. 

3.2.2 Part 2: Participatory Design 

We used participatory design with end-user sketching [182] to better understand what 

types of interactive designs, features, and uses people with mobility impairments desire 

for future ALTs. To help guide the design activity, we used scenario-based design 
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[34,155] with three scenarios; each scenario described a situation where ALTs could 

be helpful for evaluating the accessibility of the built environment. Our scenarios are 

based on GIS literature [13,58,147] that taxonomize location-based applications into 

three main areas: geographical exploration, search, and navigation. The scenarios were 

then adapted to an accessibility context. Before conducting the study, we refined our 

scenarios iteratively within our research team and later with a research partner who 

uses an electric wheelchair (Age=47; Male; SCI level C5). The three scenarios are: 

 Scenario 1: Citywide Accessibility Exploration. You are planning to 

rent a room in an unfamiliar city that you will move to in a few months. 

Imagine that there is a website that provides accessibility information 

about the city. What should that website look like? 

 Scenario 2: Accessibility-Aware Location Search. Your friends are 

visiting you, and you want to take them to an Italian restaurant in 

Washington, D.C (your hometown). You would like to find a popular 

restaurant. You also want to make sure the business and its surrounding 

areas are accessible for you. What should the application look like? 

 Scenario 3: Accessibility-Aware Navigation. You came to an 

unfamiliar city for your holiday. You remember there is a natural 

science museum that you want to visit. You open a navigation tool on 

your computer to find accessible routes from your hotel to the museum. 

What should the application look like? 
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To help our participants ideate and sketch design ideas, we prepared four paper 

templates, which they could use at their discretion: (i) a blank smartphone, (ii) a map 

on a smartphone (iii) a blank web browser, and (iv) a map on a web browser 

(with/without pins)—see Figure 3.2. While our templates are based on widely available 

technologies and familiar map interfaces, we did not restrict our participants from 

brainstorming ideas that use other user interfaces (e.g., augmented-reality devices like 

Google Glass, smartwatches). Participants were asked to “think aloud” while 

sketching. Five participants were not comfortable sketching by themselves due to weak 

upper body strength. In these cases, the participants described their ideas and the 

interviewer sketched on their behalf. 

3.2.3 Part 3: Design Probe 

For Part 3 of our study, we designed 12 low-fidelity, paper-based prototype mockups 

of ALTs ranging from heat map visualization’s of a city’s accessibility to indoor 

navigation interfaces that provide accessible routes (Figure 3.3). Prior work suggests 

that using lower-fidelity interface representations in user studies elicits more honest 

 

Figure 3.2. The four templates for sketching: (a) a blank mobile, (b) a map on a mobile, (c) a blank web 

browser, and (d) a map on a web browser. 

A B C D
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feedback [109,151] and that the presentation of multiple, alternative design solutions 

reduces inflated praise and gives rise to stronger criticism, when appropriate [182]. 

Our mockups were used as design probes to elicit reactions, prompt critical 

feedback, and ground discussions. Similar to our scenarios in Part 2, probes were 

iterated upon within our research group and with our mobility impaired research partner 

before beginning our study. Some probes utilized fictitious ‘Accessibility Scores,’ 

which were inspired by walkscore.com. Walk Score provides a number between 0-100 

that represents the walkability of a given address; the score is based on proximity to 

destinations such as restaurants, libraries, and parks as well as population density and 

road metrics such as block length and intersection density [222]. While similar, 

 

Figure 3.3. We demonstrated the twelve paper prototypes of ALTs to participants in Part 3 of the study. (a-

d) street-level accessibility visualizations, (e) citywide accessibility score comparison, (f) accessibility-aware 

location search, (g) bus stop accessibility visualization, (h-j) building accessibility, and (k-l) outdoor 

wayfinding. The high resolution version of the prototypes are available as supplementary material. 
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Accessibility Scores extend Walk Scores with notions of accessibility (e.g., the 

presence of sidewalks and curb ramps, road grade, frequency of elevation changes, and 

sidewalk width). Some features of our probes, such as how accessibility scores are 

computed, are left intentionally vague to help provoke discussion. Below, we describe 

our 12 probes categorized into six groups. For readability, we refer to the specific 

probes in parentheses without the Figure prefix. 

1. Accessibility Score Visualizations. We developed four top-down, map-based 

visualizations of accessibility scores to provide ‘at-a-glance’ information on a city’s 

accessibility. Two probes used heat map representations with different granularities: 

neighborhood-level (3.3A) vs. sidewalk-level (3.3B). The two other probes used dots 

to represent specific accessibility barriers, both categorized (3.3C) and non-categorized 

(3.3D).  

2. Citywide Accessibility Score Comparison. While the above visualizations are 

useful for exploring the general accessibility of a city or neighborhood, they do not 

easily support comparing the accessibility of different cities. This probe quantifies the 

accessibility of entire cities with a single accessibility score along with brief, textual 

rationale. Multiple cities can be entered/compared (as in 3.3E). 

3. Accessibility-Aware Location Search. In this probe, we developed a point-of-

interest search website similar to yelp.com but augmented with accessibility 

information. Users can search for a business or other point-of-interest with a keyword 
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and location. Each search result is accompanied by a 5-level accessibility score, which 

can be used for sorting and filtering (3.3F). 

4. Finding Accessible Bus Stops. We developed one probe targeted at public 

transportation—in this case, finding accessible bus stops (3.3G). Users can enter a 

location and see proximal bus stops, which are color-coded based on accessibility 

(green for accessible, red for inaccessible).  

5. Visualizing Building Accessibility. We developed three design probes for 

investigating the accessibility of buildings. The first design uses a top-down map 

visualization to indicate the accessibility of public buildings in a selected area (3.3H). 

Selecting a building zooms into its floor plans and highlights accessible and 

inaccessible features such as elevators and stairs (our second probe, 3.3I). The third 

design focuses on accessible routing interfaces for indoor environments (3.3J).  

6. Outdoor Accessible Routing. Finally, our last category contains two probes related 

to accessibility-aware pedestrian routing algorithms and interfaces. Similar to Apple or 

Google Maps, both probes allow the user to enter a start and end location and view 

suggested routes. In our designs, however, the shortest path is visualized as well as the 

shortest accessible path. The probe in 3.3K shows one alternative accessible path while 

3.3L shows multiple alternatives.  
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3.3 Data and Analysis 

Each session lasted an average of 77.9 minutes (SD=16.3; range=53-119). Sessions 

were audio/video recorded and transcribed by the research team. We used iterative 

coding [20,89] to examine the transcripts, including the responses to semi-structured 

interview questions, verbal descriptions of participants’ sketched prototypes, and 

feedback on our design probes. Our unit of analysis was a participant’s response to the 

interviewer’s question.  

We iteratively refined the codes to ensure the code set was comprehensive and 

reliable. First, a member of the research team open coded the interview transcripts of 

the first three participants (P1-3), who used different types of assistive technologies. 

Similar and recurring ideas were grouped to create the initial codebook. Using this 

codebook, two researchers independently coded the same interview transcripts (P1-3). 

We used Cohen’s kappa (κ) [42] to assess inter-coder agreement. The mean agreement 

was κ=0.40 (SD=0.14; range=0.04-0.6). Landis and Koch suggested that scores of κ < 

0.6 are at most moderate agreement [110]. In our case, 13 of 14 codes for Part 1 through 

3 were < 0.6. The two researchers then met, resolved all disagreements, and updated 

the codebook accordingly. A second set of transcripts (P4-6) were selected and the 

coding process was repeated. This time there was much higher agreement: average 

κ=0.88 (SD=0.07; range=0.69-1.0). Again, disagreements were resolved through 
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consensus and the codebook was updated a final time. One researcher coded the 

remaining transcripts using the final codebook (Table 3.2). 

3.4 Findings 

3.4.1 Part 1: Semi-Structured Interview 

We discuss what and how accessibility barriers and facilitators affect mobility impaired 

people’s lives and describe methods and tools they use to cope with problems. We use 

the phrase ‘accessibility facilitators’ to describe built environment or inter-personal 

features (e.g., curb ramps, a helpful restaurant employee)  that allow people to 

overcome the barriers [129,152]. 

Accessibility Barriers and Facilitators 

Participants were asked about mobility challenges and anxieties for trips. All 

participants except for P15, who had strong mobility, mentioned at least one type of 

barrier. Overall, 17 barriers and facilitators emerged, which we categorized into 

Part 1. Semi-structured Interview 
Accessibility barriers and enablers 
Feelings about accessibility enablers and barriers 
Methods or tools for overcoming accessibility problems  
Impact of accessibility enablers and barriers 
Methods or tools to assist with trip planning 
Methods or tools to assist with evaluating accessibility 

Part 2. Participatory Design and Part 3. Design Probe 
Accessibility barriers and enablers 
Context of use 
Design of user interface 
Accessibility data quality 

Table 3.2. The final codebook. Though originally separate, Part 2 and Part 3 eventually shared the same 

codebook after iterations.  
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outdoor, indoor, and other in Table 3.3 The most prominent accessibility attribute for 

each category included: leveled ground (e.g., steps, curbs) for outdoor, elevator for 

indoor, and accessible transportation for other (e.g., paratransit, accessible buses). Note 

that leveled ground is different from a street or sidewalk’s gradient (i.e., steepness), 

which is its own distinct attribute. 

The perceived severity of the identified accessibility barriers seemed to differ 

depending on the participant’s mobility. For example, while six participants described 

distance as a barrier to navigation, five of these used manual assistive technology. For 

example, one cane user said: “I can do grassy [surfaces]. But I need short distances 

and I need no stairs.” (P19), All manual wheelchair users mentioned the presence of 

sidewalks and unobstructed paths to be important facilitators of their movement. A 

participant who uses a manual wheelchair said: “[At] some locations, […] sidewalks 

 Barriers and Facilitators EW/S (N=8) MW (N=6) MAT (N=10) All (N=19) 

O
ut

do
or

 

Leveled Ground 7 (88%) 5 (83%) 8 (80%) 15 (79%) 
Surface Type 6 (75%) 5 (83%) 7 (70%) 14 (74%) 
Curb Ramp 7 (88%) 5 (83%) 6 (60%) 14 (74%) 
Gradient 3 (38%) 5 (83%) 5 (53%) 11 (58%) 
Narrow/Obstructed Path 5 (63%) 6 (100%) 4 (40%) 11 (58%) 
Presence of Sidewalk 3 (38%) 6 (100%) 3 (30%) 9 (47%) 
Distance 0 (0%) 1 (17%) 5 (50%) 5 (26%) 

In
do

or
 Elevator 4 (50%) 5 (83%) 8 (80%) 13 (68%) 

Entrance 6 (75%) 4 (67%) 4 (40%) 11 (58%) 
Restroom 4 (50%) 4 (67%) 4 (40%) 8 (42%) 
Accommodation 2 (25%) 3 (50%) 2 (20%) 5 (26%) 

O
th

er
 

Accessible Transportation 7 (88%) 5 (83%) 6 (60%) 14 (74%) 
Parking 3 (38%) 3 (50%) 6 (60%) 9 (47%) 
Stairs 2 (25%) 2 (33%) 5 (50%) 9 (47%) 
People’s Attitude 3 (38%) 2 (33%) 3 (30%) 6 (32%) 
Crowded Area 1 (13%) 2 (33%) 2 (20%) 4 (21%) 
Weather 1 (13%) 2 (33%) 1 (10%) 4 (21%) 

Table 3.3. The accessibility barriers and facilitators mentioned by the participants. Cells are shaded by 

response rate (darker shade=more frequent). EW/S=Electric wheelchair and scooter users, MW=Manual 

wheelchair users, MAT=Manual assistive technology users.  
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[are] narrow and for some reason have light poles right in the middle of a sidewalk, 

so I can’t get through at all.” (P3). 

Impact of Accessibility Barriers 

When asked about accessibility barriers and their impact, fifteen participants 

mentioned that barriers affected their travel decisions—both where to travel and 

whether to travel at all. For example, P17, who uses a manual wheelchair, said: “I’ll 

forgo going there if I can’t confirm there is some sort of sidewalk for me to travel 

along.” In addition, nine participants discussed how accessibility affected their mode 

of travel: “in New York City, the subway stations are not accessible […] so that was 

out of the question for us” (P7). Seven reported that their decisions on where to 

stay/live depend on accessibility. For example: “there’s been a couple of hotels we’ve 

gone to where the actual door to the hotel wasn’t accessible, so we’ve had to pick 

another hotel” (P20). Finally, three participants mentioned how accessibility barriers 

socially excluded or separated them from others. P9 said: “I wanted to go to a party 

and my friends are there and I can’t go because I get there and [I find the place to be 

inaccessible].” 

Methods to Overcome Accessibility Barriers 

Strategies to overcome the aforementioned accessibility problems organically emerged 

in the interview. Five strategies included: help from others, physical strength, detour, 

walk/roll onto the street, and setting expectations. Thirteen participants said they could 

rely on others: “occasionally if it's not accessible, my husband can help me up steps” 

(P7). Ten participants mentioned that they use physical strength to overcome barriers. 
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Among these ten, seven used manual assistive technologies. P8 said: “my husband ran 

my walker down to the bottom and then I walked down holding on [railing].” Seven 

noted they took detours when they encountered barriers. P17 said: “the bus stop was 

on grassy hill. So I didn’t get off there. I had to go up a few stops and of course it was 

past the actual shopping plaza.” Six mentioned they walk/roll on the street when 

sidewalks are not passable: “they are digging up the sidewalks. And they force us to 

use either the sidewalk on the other side, or you're forced to be on the street.” (P1). 

Methods for Accessibility Evaluation 

Participants were asked how they plan their trips to unfamiliar locations and assess 

accessibility. “Low-tech” solutions included: talking to others, relying on heuristics, 

and performing an on-site accessibility audit. Participants used technologies to assess 

accessibility as well, including: websites and online forums, online imagery, and 

existing location-based technologies. We expand on each below. 

Talking to Others: The most common method of assessing accessibility was talking 

to others (N=17). Our participants spoke with coworkers, friends and family members, 

employees who worked at their destinations, and accessibility consultants who knew 

about the accessibility of the facilities. P17 said: “If a friend has been there, I’ll ask 

‘do you remember if there was a little step’ or ‘do you remember what the access was 

[like].’” 

Heuristics: Our participants (N=11) relied on their experience and educated guesses 

to gauge the accessibility of places prior to or in lieu of travel. For example, P7 

described: “those towns that are historic, I just tend to stay away from them completely.” 
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On-site Accessibility Audit: When necessary, the participants (N=7) checked routes 

and neighborhood accessibility on-site. P12 said:  

“If it’s an important trip but I don’t want to use [paratransit], what 

I will do is a dry run the day before: get lost and find my own 

landmarks and do it the next day where I will usually get lost again 

but not as badly.” 

Websites and Online Forums: Fifteen participants noted they acquire accessibility 

information of the built environment from websites of hotels, restaurants, and other 

business facilities. Online forums were used to assess the areawise accessibility of 

neighborhoods and cities. 

“I’m trying to find out if [places are] accessible, then I will usually 

use their website or Google. But if I’m trying to go to an entire area 

like Adams Morgan or checking out an entire area, I’ll use forums. 

[…] people can be like “oh this area and this street is cute but 

doesn’t have the cobblestones.” (p4) 

Online Imagery of the Built Environment: Eleven participants reported the use of 

online imagery of the built environment like GSV, satellite imagery, and building 

façade pictures found online. P20 said:  

“I use Street View of Google. What that does is it gives me an idea. 

If there’s any steps outside of the facility or outside of the place, I’m 

able to tell right away from Google Street View, or satellite or 

anything like that.” 
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Existing Location-based Technologies: Six participants reported that they use 

accessibility features of existing location-based technologies. P17 said: “I used Yelp to 

find my restaurants, and I always go to the [indicator describing] wheelchair access. 

It’s great that that’s there, yes or no [for wheelchair access].” As for emerging ALTs, 

while 2 participants knew about AXSMap, they did not use the application due to 

coverage area and data sparseness. 

Combining Strategies. Finally, participants used not just a single method, but 

combined two or more strategies to crosscheck accessibility. For example, when asked 

about his preferred method, P20 said: 

“I guess it would be a combination, there isn’t an actual preference. 

Because then there’s a flaw in each one. Street View is not always 

updated, and the perception of the person I’m talking to that’s 

unfamiliar with my situation, they don’t know exactly what I mean.” 

Part 1 Summary. Our findings highlight common accessibility barriers and facilitators 

in the built environment, the impact of those barriers, and methods to mitigate or avoid 

accessibility problems, which reaffirm and extend prior work (e.g., [129,135,152,167]). 

We also uncovered how modern technology is used to assess accessibility (e.g., online 

imagery). 

3.4.2 Part 2: Participatory Design 

Participants were asked to sketch ideas and describe the design of future ALTs. We 

grouped recurring, emergent features of ALTs into 10 categories. We also describe five 

emergent data qualities [200] important to ALTs. 



 

 

53 

 

Common Solutions 

Overall, participants sketched and described ten different features for envisioned future 

ALTs. For the first scenario (citywide accessibility exploration), the top four most 

frequent features included:  Street-level Accessibility Visualization (N=12), Detailed 

Description (9), Routing (6), and Transportation (6). For the second scenario 

(accessibility-aware location search), participants wanted Detailed Description (13), 

Point-of-Interest Accessibility Rating (7), Remote Accessibility Inspection (7) and 

Floor Plan. Finally, for the third and final scenario (accessibility-aware navigation), 

participants wanted Routing (14), Transportation (8), Street-level Accessibility 

Visualization (7), and Remote Accessibility Inspection (4). We describe all ten 

emergent features below. 

Features 

Street-level Accessibility Visualization: Fourteen participants sketched or described 

top-down map tools that visualize accessibility barriers and facilitators in 

streets/sidewalks. These map-based visualizations were highly desired because, as our 

participants noted, they allow users to quickly explore the accessibility of a large area. 

P7’s sketch in Figure 3.4, for example, shows the presence of curb ramps as blue pins 

in a mobile map interface. Color was often used to either represent types of accessibility 

attributes or the severity of an accessibility barrier. 

Point-of-Interest Accessibility Rating: While the previous feature provides a way to 

browse street-level accessibility, eight participants wanted accessibility ratings of 

individual buildings (e.g., Figure 3.4d). Our participants thought that these ratings 
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should be either generated automatically with previously acquired accessibility 

metadata or provided by end-users (i.e., crowdsourcing), which is the technique 

employed by sites like AXSmap [224]. In describing a Yelp-like tool, P3 said: “that 

would be the crowdsourcing information with rankings from an individuals, 5 stars for 

accessibility, 2 stars for food.” As data gathering 

Detailed Description: A large majority of our participants (N=17) sketched or 

described interfaces that provided detailed information about the accessibility of a 

place. Details were important not only because of the wide-range of needs amongst a 

diverse mobility-impaired population but also because, even for a single user, needs 

may change over time or situationally. In describing a location search tool, P17 said:  

 

Figure 3.4. Examples of sketches from Part 2 of the study. (a) a mobile map that shows the accessible route 

and placement of curb ramps (sketched by P7); (b) a virtual video walk through feature to see within/around 

the housing (P9); (c) a floor map visualization to assess spaciousness of a restaurant floor (P20); (d) a search 

tool with accessibility rating of a place and reviews written by other mobility impaired (described by P12, 

sketched by a researcher), and (e) a location directory with advanced search feature to select accessibility 

attribute (P11). 
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“if you click on this one up here you could have a box that comes up 

with accessible information and maybe this says 'no' and why: 'one 

step in front of entrance.’ That lets someone decide 'well actually I 

could do that' or 'I’m going with a group, they can help me up that 

step' or 'I’m going by myself and I can’t do this' […]” 

Floor Plan: Four participants mentioned that visualizations of a buildings floor plans 

annotated with information relevant to indoor accessibility would be useful (e.g., stairs, 

elevators, narrow areas of traversal). In describing the sketch in Figure 3.4c, for 

example, P20 said that floor plans help reveal the general accessibility of a facility (a 

restaurant in this case). His tool visualizes the placement of tables and shows whether 

it is possible to reach a bathroom. 

Visual Accessibility Inspection: Eight participants said that ALTs should provide 

visual methods to let users remotely inspect the accessibility of streets/sidewalks (e.g., 

presence of curb ramps), building façades (e.g., presence of stairs), and building interior 

(e.g., maneuvering spaces) (Figure 3.4b). Desired inspection methods included 

pictures, videos, and interactive virtual reality of a room. With visual information, a 

user can inspect and confirm that the location is indeed accessible by themselves. P18 

said:  

“I guess it’s more of a matter of confidence. If I look at the map and 

it says there’s a curb cut here, I trust that’s accurate. But I would be 

more confident if I could also see a picture of it and see ‘yeah there’s 

a curb cut there, and it looks like it’s in pretty good shape.’” 
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Discussion and Review: Five participants mentioned that user-generated reviews 

would be useful to assess accessibility and to help evaluate the credibility of provided 

accessibility information (Figure 3.4d). Some specifically said accessibility reviews 

should come from other people with mobility impairments to ensure that the reviewers 

share a common perspective of what constitute accessibility barriers: “[a tool] needs 

to have reviews by other people with disabilities.” (P12) 

Search and Filter: Two methods to query accessibility information emerged. First, 

five participants described tools to search and filter places based on accessibility 

attributes. For example, an advanced search option shown in Figure 3.4e allows its 

users to specify accessibility attributes for a hotel accommodation.  

Routing: Second, fifteen participants mentioned ways for searching accessible paths 

between two locations—using either single modes or multiple modes of transportation 

(e.g., a tool that automatically finds an accessible walking path to an accessible bus to 

a user’s destination).  

Transportation: Twelve participants wanted information about (accessible) 

transportation on their ALTs. Some described more advanced features like on-demand 

accessible cabs:  

“If there was an app that showed where the cab was, kinda like in 

Uber, […] there's an accessible cab going down here in this 

direction, and you're here. It'll be to you in three minutes or 

whatever, so it can show like all the accessible cabs in your area.” 

(P11)  
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Universal Design: Finally, a request for universal design organically emerged. Three 

participants said the aforementioned features should be integrated into existing tools 

like Google Maps and Yelp rather than specialized, assistive-oriented tools that have 

smaller user bases and often fewer developer resources. “I'm all for universal 

technology, so [an accessibility feature] would be integrated into an app that everyone 

uses rather than an accessibility app.” (P11) 

Feature Summary. We grouped recurring and similar features in our participant-

created ALTs into ten categories. Features ranged from getting a high-level overview 

of the accessibility of a neighborhood to more fine-grained information about the 

accessibility of a building. Some features specifically allowed users to upload and/or 

review content and assess credibility.  

Data Quality 

Prior work has shown that perceptions of data quality such as credibility and relevancy 

dramatically impact how the data is consumed [193,200]. Below, we describe five 

important data quality attributes from Part 2. Note that we did not specifically prepare 

questions about data quality, so these themes are emergent:  

Granularity: Fourteen participants mentioned that the interface should present 

detailed accessibility information rather than just binary indicators. In designing her 

location-search tool, P7 said that ALTs should present:  

“inside each room, dimensions, bathrooms and kitchen, specifics 

with heights of counters and turnaround space, having a floor plan, 
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heights of light switches and whether or not there’s carpet or 

hardwood—the type of floor.” 

Relevance: Eight participants noted that not all accessibility information is relevant to 

their specific impairment, suggesting the need for drill-down interfaces that present 

well-categorized high-level accessibility information with detailed information 

available through interaction. In describing a location search tool, P4 said:  

“for me, I just need a ramp and an elevator. But like I said, other 

people need other things, so they would have to probably come up 

with a list of all the different things that would be classified as 

accessible to different people.” 

Credibility: Six participants mentioned that the data needs to be trustable: “[...] can 

we even trust the website? I would have to know the person who reviewed it as 

accessible has either a similar disability to my own or understands the concerns of a 

person who my particular issues.” (P12) 

Recency of Information: Six participants mentioned that up-to-date data is crucial, 

especially for accessibility barriers that change daily (e.g., construction) or even hourly 

(e.g., pedestrian traffic). P3 noted: “Currency of information is always a key. […] 

Google Street View makes everything look accessible but does not include the 

construction that recently started.”  

Coverage: Two participants described the issue of scarce data in emerging ALTs like 

AXSMap:  
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“AXS map? […] it doesn't get much traction, because […] they don't 

cover enough area, so it's like one neighborhood in NYC and it's like 

who's going to really look at that?” (P11) 

Part 2 Summary. Through participatory design activities, we identified ten desired 

features and five essential data qualities for ALTs. The top three most desired features 

were providing detailed descriptions, accessibility-aware routing, and top-down map-

based views of street-level accessibility. Data quality attributes often related to features 

(e.g., high granularity of data corresponds to the detailed description feature). 

3.4.3 Part 3: Design Probe 

In the last part of our study, we used 12 probes (Figure 3.3) to explore designs and 

functionalities of future ALTs. We specifically conducted this part of the study after 

the participatory design to not bias the participants’ ideation process while sketching 

in Part 2. Many features and probe designs ended up overlapping with participants’ 

own ideas. Thus we focus on describing overall reactions to our probes here as well as 

specific feedback that differs from Part 2.  

Overall Reactions 

Accessibility Score Visualizations (3A-D): Eighteen participants reacted positively to 

the concept of visualizing street-level accessibility on a map (Figure 3.5). Of these four 

probes, participants were less supportive towards the neighborhood-level heat map 

probe (3A) because of low location precision and, instead, preferred the sidewalk-level 
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heat map probe (3B). Participants preferred the categorized dot probe over the 

uncategorized one due to a higher level of information granularity. 

Citywide Accessibility Score Comparison (3E): Only six participants reacted 

positively towards the citywide accessibility score comparison (Figure 3.6). 

Participants expressed doubt about the utility of the application because they felt that a 

city, as a unit of accessibility evaluation, is too broad and coarse to provide any 

meaningful insights.  

 

Figure 3.5. Design probe a-d that visualize street-level accessibility. (a & b) Neighborhood- and sidewalk-

level accessibility visualizations that shows accessible areas in green and inaccessible areas in red. (c & d) 

Point-level visualization that show specific accessibility barriers in dots, both categorized (c) and non-

categorized (d). 
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“I think the problem with it is, at least at the level you’re displaying 

it here, is that it’s too high level. It’s not granular enough. Take for 

example New York, I might be interested in Manhattan, but not 

Brooklyn or Queens. But if you got this overall score that doesn’t 

really tell me much.” (P18) 

Accessibility-Aware Location Search (3F): Thirteen participants reacted positively 

towards the design of the location search tool (Figure 3.7). Participants suggested 

improving the design by allowing users to examine the rationale for the 5-level 

accessibility score (e.g., presence of handicap parking). Other suggestions included 

provision of pictures of the building façade and accessibility reviews by others. 

Accessible Bus Stops Visualization (3G): A majority of participants (N=15) favored 

the idea of visualizing bus stop accessibility (Figure 3.8). Design suggestions included 

providing rationale for why bus stops are (in)accessible, presenting general transit 

 

Figure 3.6. Citywide accessibility score comparison. This probe quantifies the accessibility of entire cities with 

a single accessibility score along with brief, textual rationale. 
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information, and offering similar information for different types of public 

transportation (e.g., trains, subways). 

Visualizing Building Accessibility (3H-J): Seventeen participants reacted positively 

to the idea of color coding the accessibility of buildings on a map and/or showing floor 

plan accessibility visualizations (Figure 3.9). For the floor plan visualization (3I), two 

participants suggested denoting what the areas are used for to improve 

understandability. In contrast, only 8 participants (42%) thought that the indoor routing 

 

Figure 3.7. Accessibility-aware location search. A point-of-interest search website similar to yelp.com but 

augmented with accessibility information. Users can search for a business or other point-of-interest with a 

keyword and location. Each search result is accompanied by a 5-level accessibility score, which can be used 

for sorting and filtering 
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tool (3J) would be useful. Most participants felt that more effective alternative methods 

are readily available (e.g., talking to others, looking at mall directories). 

Outdoor Accessible Routing (3K-L): Seventeen participants reacted positively 

towards accessibility-aware routing interfaces (Figure 3.10). Twelve preferred the 

interface with multiple routes (3L), while three preferred the simpler interface (3K). 

One participant suggested including audible turn-by-turn navigation, because moving 

her upper body to interact with her mobile tool was hard. 

 

Figure 3.8 Accessible bus stop visualization. Users can enter a location and see proximal bus stops, which are 

color-coded based on accessibility (green for accessible, red for inaccessible). 
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Part 3 Summary. More than half of participants reacted positively towards all probes 

except for the citywide accessibility score comparison and indoor routing probes. In 

discussing mockups of Accessibility Score Visualizations, an additional data quality, 

location precision, emerged; which refers to geographical fidelity of accessibility data 

(e.g., at sidewalk level or block level). 

 

Figure 3.9. Visualizing building accessibility. (Top-left) The first design uses a top-down map visualization to 

indicate the accessibility of public buildings in a selected area. (Top-right) The floorplan visualization 

highlights accessible and inaccessible features such as elevators and stairs. (Bottom) The third design focuses 

on accessible routing interfaces for indoor environments. 
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3.5 Discussion  

We reflect on the implications of our findings, describe study limitations, and offer 

suggestions for future work. 

3.5.1 ALTs Design Considerations and Recommendations 

The study in this chapter reaffirms the unmet needs of previously proposed/designed 

ALTs (e.g., accessibility-aware POI search [68,176]) as well as presents desired 

assistive features that have not been described before (e.g., visual accessibility 

inspection). Following the design practice described in [155], we formulate design 

recommendations based on findings from our three ALT scenarios: 

Citywide Accessibility Exploration: Location precision and categorical granularity of 

accessibility barriers were valued in the design probe activities. We suggest providing 

two types of visualizations similar to Figure 3.3b and c. Information about accessible 

 

Figure 3.10. Accessibility-aware routing. Similar to Apple or Google Maps, these probes allow the user to 

enter a start and end location and view suggested routes. In our designs, however, the shortest path is 

visualized as well as the shortest accessible path. The probe on the left shows one alternative accessible path 

while the one on the right shows multiple alternatives. 
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routes to nearby locations (e.g., cafes) is also recommended. Given a point on a map, 

provide a range of nearby amenities together with the detailed information about 

accessible routes to those destinations (e.g., distance of the shortest accessible route). 

Accessibility-Aware Location Search: For each location search result, provide an 

overall accessibility rating of the place. This will allow mobility impaired users to 

quickly browse through the list of results and find a few that are accessible and have 

high reputations. Providing rationale for the accessibility ratings is also strongly 

desired, including a list describing what barriers or facilitators make each location 

accessible or not. 

Accessibility-Aware Navigation: Future ALTs that support routing should provide 

multimodal accessibility-aware navigation. The interfaces should provide routes with 

accessible transportation (e.g., accessible taxis, buses) and accessible walking/rolling 

directions. To further improve the interface, provide geographical visualizations of 

neighborhood accessibility along the route. This will allow users to reason about why 

the routes are recommended. 

Similar to prior research in data quality of online reviews for health care 

providers [193] and businesses [12], our findings support the need for ensuring and 

maintaining high data quality. The recommended designs above should allow users to 

verify accessibility information by incorporating features described in Part 2 (e.g., 

Visual Inspection). 
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3.5.2 Future Work 

One key challenge in designing and deploying ALTs is finding and maintaining up-to-

date information about the accessibility of the built environment. Though prior work, 

including ours described in the following chapters, has explored crowdsourced or semi-

automated methods to remotely collect outdoor accessibility information at scale 

[3,73,77,81,84], these methods rely on potentially out-of-date information, offer no 

way for users to update or comment, and do not yet work for indoor environments. 

Potential avenues of future research in this area include exploring potentially rich and 

scalable but untapped sources of accessibility information such as daily-updated 

satellite imagery (e.g., Planet Labs [225]) or even surveillance video streams (e.g., 

Placemeter [226], dashboard cameras on government vehicles [229]). 

Our study elicited design features of future ALTs. How best to combine these 

for different scenarios is an open question. For example, P3 wanted accessibility-aware 

navigation tool on Google Glass so the application could help him navigate on-the-go. 

While feature requirements for the technology may be similar (i.e., routing, transit 

information), more investigation is needed. 

3.5.3 Accessibility Data in Sharing Economy 

Should ALTs provide accessibility information of private properties? Although 

mentioned by only one participant, emergent sharing economies such as Airbnb raise 

important questions for ALTs. In the U.S., for example, there are no regulations that 

mandate residential housing to be accessible. Thus, it is not clear if Airbnb 
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accommodation owners need to comply with ADA [7]. P7 raises some important points 

about this complex issue:  

“… most of the places in Airbnb are not accessible to rent out. But 

now there's is… [an advanced feature to search with] wheelchair 

accessibility of a home or something, but it's all dependent on the 

person who’s renting the home and what their understanding of what 

accessible is.” 

3.5.4 Limitations 

We performed a qualitative study of 20 mobility impaired participants located in the 

eastern US. Future work should consider a larger, more diverse sample and compare 

perspectives. Our study focused solely on mobility-impaired users, future work should 

include people with other physical or sensory impairments.  Finally, though useful in 

structuring the participatory design activity, our use of templates in Part 2 may have 

affected our results.  

3.6 Conclusion 

The study in this chapter provides the first work investigating modern and desired 

methods and technologies for evaluating built environment accessibility. We conducted 

a three-part study with 20 mobility impaired participants. Part 1 reinforced and 

extended findings in the literature regarding perspectives of accessibility 

barriers/facilitators. Through participatory design activities in Part 2 and 3, we 
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uncovered 10 key features of desired ALTs and six key data qualities, which have 

implications for the design of future ALTs. 
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Chapter 4 Collecting Sidewalk Accessibility Data with 

Crowdsourcing 

This chapter describes our initial work on building and evaluating a system that collects 

street-level accessibility information by combining crowdsourcing and Google Street 

View (GSV). This chapter has adapted and rewritten content from papers at ASSETS 

2012 and CHI 2013 [80,81]. 

4.1 Introduction 

According to the most recent US Census (2010), roughly 30.6 million individuals have 

physical disabilities that affect their ambulatory activities [185]. Of these, nearly half 

report using an assistive aid such as a wheelchair (3.6 million) or a cane, crutches, or 

walker (11.6 million) [185]. Despite aggressive civil rights legislation for Americans 

with disabilities (e.g., [1,191]), many city streets, sidewalks, and businesses in the US 

remain inaccessible [132]. 

As we described in this dissertation’s Introduction, the problem is not just that 

sidewalk accessibility fundamentally affects where and how people travel in cities but 

also that there are few, if any, mechanisms to determine accessible areas of a city a 

priori. Indeed, in a recent report, the National Council on Disability noted that they 

could not find comprehensive information on the “degree to which sidewalks are 

accessible” across the US [132]. Traditionally, sidewalk assessment has been 

conducted via in-person street audits [171,172], which are labor intensive and costly 
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[157], or via citizen call-in reports, which are done on a reactive basis. As an 

alternative, we propose the use of crowdsourcing to locate and assess sidewalk 

accessibility problems proactively by labeling GSV imagery  

We report on three studies in particular: design exploration for the image 

labeling interface (Exploratory Study), a feasibility study with motivated people (Study 

1) and an online crowdsourcing study using Amazon Mechanical Turk (Study 2). In 

Exploratory Study, we conduct a preliminary study to explore the design of image 

labeling interface by asking crowd workers from Amazon Mechanical Turk to label 

accessibility issues found in a manually curated database of 100 GSV images. We 

examine the effect of three different interactive labeling interfaces (Figure 4.1) on task 

accuracy and duration. Because labeling sidewalk accessibility problems is a subjective 

and potentially ambiguous task, Study 1 investigates the viability of the labeling 

sidewalk problems amongst two groups of diligent and motivated labelers: three 

members of our research team and three “sidewalk accessibility experts”—in this case, 

wheelchair users. We use the results of this study to: (i) show that the labeling approach 

is reliable, with high intra- and inter-labeler agreement within and across the two 

groups; (ii) acquire an understanding of baseline performance—that is, what does good 

 
Figure 4.1. Using crowdsourcing and Google Street View images, we examined the efficacy of three different 

labeling interfaces on task performance to locate and assess sidewalk accessibility problems: (a) Point, (b) 

Rectangle, and (c) Outline. Actual labels from our study shown.  
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labeling performance look like? (iii) provide validated ground truth labels that can be 

used to evaluate crowd worker performance. 

For Study 2, we investigate the potential of using crowd workers on Mechanical 

Turk (turkers) to perform this labeling task. We evaluate performance at two levels of 

labeling accuracy: image level, which tests for the presence or absence of the correct 

label in an image, and pixel level, which examines the pixel-level accuracies of the 

labels provided (as in Figure 4.2). We show that, when compared to ground truth, 

turkers are capable of determining that an accessibility problem exists in an image with 

80.6% accuracy (binary classification) and determining the correct problem type with 

78.3% accuracy (multiclass classification). Using a simple majority voting scheme with 

three turkers, this accuracy jumps to 86.9% and 83.8% respectively. We also examine 

the effect of two quality control mechanisms on performance: statistical filtering and 

multilevel review (see [146]). Our findings suggest that crowdsourcing both the 

labeling task and the verification task leads to a better quality result. We also 

demonstrate the performance/cost tradeoffs therein.  

 

Figure 4.2. We propose and investigate the use of crowdsourcing to find, label, and assess sidewalk 

accessibility problems in Google Streetview (GSV) imagery. The GSV images and annotations above are from 

our experiments with Mechanical Turk crowd workers. 
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Note that unlike labeling interfaces presented in other chapters (Chapter 5 & 6), 

the labeling interface in Chapter 4 used static, pre-cropped GSV images. Our labeling 

interfaces presented in Chapters 5 & 6 were built with Google’s Street View API, so 

they allowed for panning to explore the entire GSV panorama and, in some cases, 

walking (Chapter 6). 

The contributions of the work in this chapter are threefold: (i) the first step 

toward a scalable approach for combining crowdsourcing and existing online map 

imagery to identify perceived accessibility issues, (ii) measures for assessing turker 

performance in applying accessibility labels, and (iii) strategies for improving overall 

data quality. Our approach could be used as a lightweight method to bootstrap 

accessibility-aware urban navigation routing algorithms, to gather training labels for 

computer vision-based sidewalk assessment, and as a mechanism for city governments 

and citizens to report on and learn about the health of their community’s sidewalks 

(e.g., through accessibility scores similar to walkscore.com). 

4.2 Evaluating Annotation Correctness 

In this section, we provide an overview of the correctness measures. Because this is a 

new area of research, we introduce and explore a range of metrics—many of which 

have different levels of relevancy across application contexts (e.g., calculating the 

accessibility score of a neighborhood vs. collecting training data for a computer vision 

algorithm). For the Exploratory Study, we assess image level accuracy measures and 
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we use both image level  and pixel level measures for our main studies (Study 1 and 

Study 2). 

4.4.1 Defining Levels of Annotation Correctness 

Assessing annotation correctness in images is complex. To guide our analysis, we 

derive two spectra that vary according to the type and granularity of data extracted from 

each label: the localization spectrum and the specificity spectrum. The localization 

spectrum describes the positioning of the label in the image, which includes two 

discrete levels of granularity: image level and pixel level. For image level, we simply 

check for the absence or presence of a label anywhere within the image. Pixel level is 

more precise, examining individual pixels highlighted by the label outline. Our pixel-

level analysis is analogous to image segmentation in computer vision and, indeed, our 

evaluation methods are informed from work in this space. 

The specificity spectrum, in contrast, varies based on the amount of descriptive 

information evaluated for each label. At the finest level of granularity, we check for 

matches based on the five label categories as well as corresponding severity ratings: 

Object in Path, Prematurely Ending Sidewalk, Surface Problem, Curb Ramp Missing, 

and No Problem (indicating the user had clicked “no accessibility problems found”). 

Note that Curb Ramp Missing and No Problem were exempt from severity ratings. At 

the next level of granularity, we only examine problem types, ignoring severity ratings; 

we refer to this level as multiclass. Finally, at the coarsest level of granularity we group 

all problem categories into a binary classification of problem vs. no problem.  
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As the first work in the area, these dimensions of analysis are important for 

understanding crowd worker performance across various measures of correctness. 

Identifying an appropriate level of correctness may depend on the specific application 

context. For example, because of the focal length and camera angles used in GSV 

imagery, simply identifying that an accessibility problem exists in an image (i.e., 

image-level, binary classification) localizes that problem to a fairly small geographic 

area: a specific street side and sidewalk within a city block. This level of geographic 

precision may be sufficient for calculating accessibility scores or even informing 

accessibility-aware routing algorithms. Binary classification—whether at the image 

level or the pixel level—also helps mitigate the subjectivity involved in selecting a 

label type for a problem (e.g., some persons may perceive a problem as Object in Path 

while others may see it as a Surface Problem). In other cases, however, more specific 

correctness measures may be needed. Training computer vision algorithms to segment 

and, perhaps, automatically identify and recognize obstacles, would require pixel-level, 

multiclass specificity. 

4.2.2 Image-Level Correctness Measures 

For image-level analysis, we computed two different correctness measures: a 

straightforward accuracy measure and a more sophisticated measure involving 

precision and recall. For accuracy, we compare ground truth labels with turker labels 

for a given image and calculate the percentage correct. For example, if ground truth 

labels indicate that three problem types exist in an image: No Curb Ramp, Object in 
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Path, and a Surface Problem, but a turker only labels No Curb Ramp, then the resulting 

accuracy score would be 50% (1 out of 3 problems identified correctly and 1 correct 

for not providing Sidewalk Ending). Though easy to understand, this accuracy measure 

does not uncover more nuanced information about why an accuracy score is obtained 

(e.g., because of false positives or false negatives).  

As a result, we incorporated a second set of correctness measures, which extend 

from work in information retrieval: precision, recall, and an amalgamation of the two, 

f-measure that combines them into a single metric. All three measures return a value 

between 0 and 1, where 1 is better:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 𝐿𝑎𝑏𝑒𝑙𝑠 

# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 𝐿𝑎𝑏𝑒𝑙𝑠 +# 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠  𝐿𝑎𝑏𝑒𝑙𝑠
           (Eq. 1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 𝐿𝑎𝑏𝑒𝑙𝑠

# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 𝐿𝑎𝑏𝑒𝑙𝑠 + # 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔  𝐿𝑎𝑏𝑒𝑙𝑠
               (Eq. 2) 

F-measure = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                (Eq. 3) 

True positive here is defined as providing the correct label on an image, false positive 

is providing a label for a problem that does not actually exist in the image, and false 

negative is not providing a label for a problem that does exist in the image. In this way, 

precision measures the accuracy of the labels actually provided (i.e., a fraction 

expressing the ratio of correct labels over all labels provided) while recall measures the 

comprehensiveness of the correct labels provided (i.e., a fraction expressing the ratio 

of correct labels over all possible correct labels).  For example, a precision score of 1.0 

means that every label the turker added was correct but they could have missed labels. 

A recall score of 1.0 means that the turker’s labels include all of the actual problems in 

the image but could also include non-problems. Given that algorithms can be tuned to 
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maximize precision while sacrificing recall and vice versa, the f-measure provides a 

single joint metric that encapsulates both. We use accuracy, precision, recall, and f-

measure to describe our image level results. 

4.2.3 Pixel-Level Correctness Measures 

Pixel-level correctness relates to image segmentation work in computer vision. Zhang 

[216] provides a review of methods for evaluating image segmentation quality, two of 

which are relevant here: the goodness method, which examines segmentation based on 

human judgment and the empirical discrepancy method, which programmatically 

calculates the difference between test segmentations and “ground truth” segmentations 

for a given image. The goodness method can be advantageous in that it does not require 

ground truth; however, it is labor intensive because it relies on human judgment to 

perceive quality. Though judging the quality of segmentations can also be 

crowdsourced, partly mitigating the labor concern (e.g., [16]), the quality of the 

judgment remains an issue. 

We also explored two empirical discrepancy methods: overlap (or area of 

intersection) [6,181] and, again, precision/recall combined with f-measure [31,32], 

which is similar to that explained above though applied at the pixel level rather than 

the image level. For our first discrepancy method, overlap is defined as: 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐴, 𝐵) =
𝐴𝑟𝑒𝑎(𝐴 ∩ 𝐵)

𝐴𝑟𝑒𝑎(𝐴 ∪ 𝐵)
  (Eq. 4) 

where A and B are the pixel outlines. Note that if the outline A is perfectly equal to the 

outline B, then Overlap(A,B)=1. If A and B are disjoint, then Overlap(A,B)=0. 
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Although this metric is easy to understand, similar to the straightforward accuracy 

measure for image-level analysis, it fails to capture nuances in correctness. Thus, for 

our second discrepancy metric we define precision, recall, and f-measure at the pixel 

level. From the image segmentation literature [228], precision is defined as the 

probability that a generated outline-fill pixel area correctly highlights the target object 

and recall is the probability that a true outline-fill pixel is detected. Thus, in order to 

calculate precision and recall at the pixel level, we need to compute three different pixel 

counts for each image:  

1. True positive pixels: number of overlapping pixels between the ground truth 

segmentation and the test segmentation; 

2. False positive pixels: number of pixels in the test segmentation not in the 

ground truth segmentation; 

3. False negative pixels: number of pixels in the ground truth segmentation not in 

the test segmentation. 

Precision and recall can then be computed by the following formulae (f-measure is the 

same as eq. 3 above): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 𝑃𝑖𝑥𝑒𝑙𝑠 

# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 𝑃𝑖𝑥𝑒𝑙𝑠 +# 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠  𝑃𝑖𝑥𝑒𝑙𝑠
           (Eq. 5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 𝑃𝑖𝑥𝑒𝑙𝑠

# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 𝑃𝑖𝑥𝑒𝑙𝑠 + # 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔  𝑃𝑖𝑥𝑒𝑙𝑠
               (Eq. 6) 

Before calculating pixel-level correctness for any of the measures, we flatten 

all labels with equivalent type into the same layer and treat them as a single set of 
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pixels. This allows us to more easily perform pixel-by-pixel comparison between 

ground truth labels and test labels marked with the same problem type. 

4.3 Exploratory Study: Annotation Interface Design Study 

To collect geo-labeled data on sidewalk accessibility problems in GSV images, we 

created an interactive online labeling tool in JavaScript, PHP and MySQL. Labeling 

GSV images is a three step process consisting of marking the location of the sidewalk 

problem, categorizing the problem into one of five types, and assessing the problem’s 

severity. For the first step, we created three different marking interfaces to assess their 

label granularity vs. labeling speed trade-off: (i) Point: a point-and-click interface; (ii) 

Rectangle: a click-and-drag interface; and (iii) Outline: a path-drawing interface 

(Figure 4.1). We expected that the Point interface would be the quickest labeling 

technique but that the Outline interface would provide the finest pixel granularity of 

marking.  

Once a problem has been marked, a pop-up menu appears with four specific 

problem categories: Curb Ramp Missing, Object in Path, Prematurely Ending 

Sidewalk, and Surface Problem. We also included a fifth label for Other. These 

categories are based on sidewalk design guidelines from the US Department of 

Transportation website [102] and the US Access Board [122]. Finally, after a category 

has been selected, a five-point Likert scale appears asking the user to rate the severity 

of the problem where 5 is most severe indicating “not passable” and a 1 is least severe 

indicating “passable.” If more than one problem exists in the image, this process is 
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repeated. After all identified sidewalk problems have been labeled, the user can select 

“submit labels” and another image is loaded. Images with no apparent sidewalk 

problem can be marked as such by clicking on a button labeled “There are no 

accessibility problems in this image.” Users can also choose to skip an image and 

record their reason (e.g., image too blurry, sidewalk not visible).  

4.3.1 Study Method 

To investigate the feasibility of using crowd workers for this task, we posted our three 

labeling interfaces (Point, Rectangle, and Outline) to Amazon Mechanical Turk. 

Crowd workers (“turkers”) could complete “hits” with all three interfaces but would 

see each image at most once. Before beginning the labeling task with a particular 

interface, turkers were required to watch the first half of a three-minute instructional 

video. Three videos were used, one for each condition, which differed only in the 

description and presentation of the corresponding labeling interface. After 50% of the 

video was shown, the labeling interface would automatically appear (thus, turkers were 

not forced to watch the entire video).  

Each labeling interface pulled images from the same test dataset, which 

consisted of 100 static GSV images. These images were manually scraped by the 

research team using GSV of urban neighborhoods in Los Angeles, Baltimore, 

Washington DC, and New York City. We attempted to collect a balanced dataset. Of 

the 100 images, 81 (81%) contained one or more of the aforementioned problem 
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categories. The remaining 19 images had no visible sidewalk accessibility issues and 

were used, in part, to evaluate false positive labeling activity.  

 

To evaluate turker performance, we created baseline label data by having three 

researchers independently label all 100 images in each of the three interfaces. Inter-

rater agreement was computed on these labels at the image level using Fleiss’s kappa 

for each interface. More specifically, we tested for agreement based on the absence or 

presence of a label in an image and not on the label’s particular pixel location or 

severity rating. We found moderate to substantial agreement [110] (ranging from 0.48 

to 0.96). From these labels, we created a majority-vote “ground truth” dataset. Any 

image that received a label from two of the three authors was assigned that label as 

“ground truth” (Table 4.1).  

4.3.2 Analysis and Results 

We posted our task assignments to Mechanical Turk in batches of 20-30 over a one 

week period in June, 2012. In all, we hired 123 distinct workers who were paid three 

to five cents per labeled image. They worked on 2,235 assignments and provided a total 

of 4,309 labels (1.9 per image on average). As expected, the Point interface was the 

fastest with a median per-image labeling time of 32.9 seconds (SD=74.1) followed by 

 No Curb Ramp Object in Path Sidewalk Ending Surface Problem 

Point 34 27 10 29 

Rectangle 34 27 11 28 

Outline 34 26 10 29 

Table 4.1. Frequency of labels at the image level in our ground truth dataset based on a “majority vote” from 

three trained labelers. 
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Outline (41.5s, SD=67.6) and Rectangle (43.3s, SD=90.9). When compared with our 

ground truth dataset, overall turker accuracies at the image level were: 83.0% for Point, 

82.6% for Outline, and 79.2% for Rectangle. 

We also explored accuracy as a function of the number of turkers per image and 

as a function of label type. To do this, we calculated four different turker-based 

majority vote datasets for each interface based on four different turker group sizes: 1, 

3, 5, and 7. Group membership was determined based on the order of completion for 

each hit. The results are shown in Figure 4.3. Note that, again, we perform these 

comparisons at the image level rather than the individual label level and that we again 

ignore severity. These calculations are left for future work.  

We did, however, employ an additional evaluation method by calculating the 

precision and recall rate of each interface, where:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠
 , 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔
 

 

Figure 4.3. The number of turkers per image vs. accuracy for each of the three labeling interfaces. Note that 

the y-axis begins at 50%. 
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True positive here is defined as is providing the correct label on an image, false 

positive is providing a label for a problem that does not actually exist on the image, and 

false negative is not providing a label for a problem that does exist in the image. Our 

results are presented in Table 4.2. Both high precision and recall are preferred. The 

precision rate for Object in Path and Surface Problems are relatively low for all three 

interfaces. This indicates that turkers are making false positive decisions for those 

labels—that is, they tend to use these labels for things that are not actually problems.  

4.3.3 Discussion for the Exploratory Study 

In this section, we explored the feasibility of using crowd-sourced labor to label 

sidewalk accessibility problems from GSV images as well as investigated the trade-off 

in using three types of labeling interfaces. We showed that untrained crowd workers 

can locate and identify sidewalk accessibility problems with relatively high accuracy 

(~80% on average). However, there is a clear problem with turkers overlabeling images 

(i.e., we had a high false positive rate). In addition, there is a non-trivial number of bad 

quality workers—11 out of 123 had an error rate greater than 50%. We investigate the 

turker performance in more details in Study 2. We explored the trade-off in using three 

  
No Curb 
Ramp 

Object in 
Path 

Sidewalk 
Ending 

Surface 
Problem 

Overall 

Point 
Precision 0.90 0.53 0.80 0.76 0.71 
Recall 0.82 0.93 0.73 0.93 0.87 

Rectangle 
Precision 0.85 0.48 0.80 0.59 0.63 

Recall 0.85 1.00 0.73 0.71 0.84 

Outline 
Precision 0.89 0.47 0.89 0.71 0.67 
Recall 0.91 0.93 0.73 0.89 0.89 

Table 4.2. Precision and recall results for the three labeling interfaces based on majority vote data with three 

turkers compared to ground truth. “Object in path” is consistently the worst performing label. 
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types of labeling interfaces. As expected, the Point interface was the quickest to label 

(32.9s) compared to Outline (41.5s) and Rectangle (43.3s) but not with a big margin. 

Therefore, we decided to use the Outline interface in the following study as it provides 

much more pixel-granularity compared to the Point interface. 

4.4 Dataset (Study 1 & 2) 

To collect geo-labeled data on sidewalk accessibility problems in GSV images, we used 

the web-based labeling tool (Figure 4.4)—the Outline tool described above (Figure 4.1) 

We also created a verification interface where users could accept or reject previously 

collected labels (Figure 4.5). Below, we describe the annotation interface and the 

primary dataset used in our studies. We return to the verification interface in the Study 

2 section. 

The test dataset used in the labeling interface consists of 229 images manually 

scraped by the research team using GSV of urban neighborhoods in Los Angeles, 

Baltimore, Washington, D.C., and New York City. We attempted to collect a balanced 

dataset. Of the 229 images, 179 (78%) contained one or more of the aforementioned 

problem categories; 50 (22%) had no visible sidewalk accessibility issues and were 

used, in part, to evaluate false positive labeling activity. Based on our majority-vote 

ground truth data (described later), we determined the following composition: 67 (29%) 

images with Surface Problems, 66 (29%) images with Object in Path, 50 (22%) with 

Prematurely Ending Sidewalk, and 47 (21%) with Curb Ramp Missing. This count is 

not mutually exclusive—48 (21%) images in total included more than one problem 
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type. The label Other was used 0.5% of the time in Study 1 and 0.6% in Study 2 and is 

thus ignored on our analyses. As of September 2012, the average age of the images is 

3.1 years old (SD=0.8 years). We return to the potential issue of image age in the 

discussion. 

 
Figure 4.4.  Labeling GSV images is a three step process consisting of (a) marking the location of the sidewalk 

problem in the image, (b) categorizing the problem into one of five types, and (c) assessing the problem’s 

severity. Here, the utility pole is labeled Object in Path and rated 5 (Not Passable). 
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4.5 Study 1: Assessing Feasibility 

Labeling accessibility problems perceived in streetscape images is a subjective process. 

As such, our first study focused on demonstrating that informed and well-motivated 

 
Figure 4.5. The verification interface used to experiment with crowdsourcing validation of turker labels—

only one label is validated at a time in batches of 20. (a) A correctly labeled No Curb Ramp problem; (b) A 

false positive Object in Path label (the utility pole is located in the grass and not in the sidewalk); (c) A false 

negative example: The cars should have been marked as Object in Path. 
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labelers could complete the labeling task and produce consistent results. We had two 

additional goals: (i) to produce a vetted ground truth dataset that could be used to 

calculate turker performance in Study 2, and (ii) to help contextualize Study 2 results 

(i.e., what does “good” performance look like for our labeling task?). 

We collected independently-labeled data from two groups: three members of 

our research team and three wheelchair users (who served as “sidewalk accessibility 

experts”). We then computed intra- and inter-annotator agreement scores for within and 

between each group respectively. We explore agreement at both the image level and 

the pixel level across binary and multiclass classification. 

4.5.1 Collecting Wheelchair User Ground Truth Data 

Three wheelchair users were recruited via listservs and word-of-mouth: two males with 

spinal cord injury (tetraplegia) and one male with cerebral palsy. All three used 

motorized wheelchairs; one also used a manual wheelchair but rarely. Each wheelchair 

user took part in a single labeling session at our research lab. Participants were asked 

to label the images based on their own experiences and were instructed that not all 

images contained accessibility problems. They were also asked to “think-aloud” during 

labeling so that we could better understand the rationale behind their labeling decisions.  

The sessions lasted for 1.5-3 hours and included a short, post-labeling interview where 

we asked about the participant’s personal experiences with sidewalk/street accessibility 

and about potential improvements to our labeling tool. All interviews were video 

recorded. In consideration of participant time and potential fatigue, only a subset of the 
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total 229 image dataset was labeled: 75 in total. These images were selected randomly 

from each of the four problem categories (4 categories x 15 images = 60) plus an 

additional 15 randomly selected “no problem” images. Participants were compensated 

$25-35 depending on session length. Below, we report on evaluating agreement 

between the researchers, the wheelchair users, and the researchers compared to the 

wheelchair users. For the latter calculation, we compare majority vote data from each 

group so N=2 rather than N=6. 

4.5.2 Evaluating Image-Level Agreement and Performance 

We computed inter-rater agreement on labels at the image level using Fleiss’ kappa 

[110], which attempts to account for agreement expected by chance. As this was an 

image-level analysis, we tested for agreement based on the absence or presence of a 

label in an image and not on the label’s particular pixel location or severity rating. 

Multiple labels of the same type were compressed into a single “binary presence” 

indicator for that label. For example, if three individual Surface Problems were labeled 

Image-Level 
Label Specificity 

Label Researchers (N=3, I=229) 
Wheelchair Users (N=3, 

I=75) 

Researchers vs. Wheelchair 
Users 

(N=2 groups, I=75) 

Binary  
Classification 

No Problem vs. 
Problem 

0.81 0.68 0.79 

Multiclass 
Classification 

No Curb Ramp 0.81 0.82 0.83 

Object in Path 0.56 0.55 0.62 

Sidewalk Ending 0.86 0.71 0.78 

Surface Problem 0.62 0.40 0.74 

Overall 0.69 0.62 0.74 

Table 4.3: Fleiss’ kappa annotator agreement scores for image-level analysis between the researchers, the 

wheelchair users, and the researchers compared to the wheelchair users (this lattermost comparison is based 

on majority vote data within each group).  
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in an image, for our analysis, we only considered the fact that a Surface Problem was 

detected and not how many occurrences there were exactly. This helped control for 

different annotator tendencies—some who would provide one large label to cover 

contiguous problem areas and others who would provide separate labels. Results are 

shown in Table 4.3 for both binary and multiclass classification (N represents the 

number of annotators and I the number of images, Table 4.4. uses the same notation).  

Three key results emerge: first, both the researchers and the wheelchair users 

had moderate to substantial levels of agreement [110], which indicates that the labeling 

task, at least at the image-level, is feasible and that the labels are fairly consistent across 

labelers; second, and just as importantly, the third column in Table 4.4 shows high 

agreement between the majority vote data of the research team and the wheelchair 

users, which indicates that the accessibility problems identified by the research team 

are consistent with “experts”; and, finally, the multiclass agreement results show that 

Object in Path and Surface Problem have more disagreement than No Curb Ramp and 

Sidewalk Ending. This is because Object in Path and Surface Problems are often less 

salient in images and because they are occasionally substituted for one another (e.g., 

some labelers perceive a problem as Object in Path while others as a Surface Problem). 

4.5.3 Evaluating Pixel-Level Agreement and Performance 

Calculating pixel-level agreement is more challenging. Because no widespread 

standards exist for evaluating pixel-level agreement for human labelers, we followed 

the process prescribed by Martin et al. [123]. We verify the labeling process by 
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showing that pixel-level label overlap and f-measure scores are higher between labelers 

on the same image than across different images. These scores will later act as a baseline 

for defining good performance when evaluating turker labels. To compare between the 

same images, 678 comparisons are required (3 annotators x 229 images). For different 

images, 156,636 comparisons are required (3 annotators x (229 x 229) - 229). Because 

the wheelchair users only labeled 75 of the 229 images, their comparison count is 

correspondingly lower (225 for same, 16,650 for different). We ignore images for 

which all annotators labeled No Problems Found (as no pixel labels exist in these 

images). Our results are shown in Table 4.5. 

From these results, we conclude that our pixel level annotations across labelers 

are reasonably consistent, although less so than for image level. Unsurprisingly, 

agreement is higher for binary classification than for multiclass, though not 

substantially. This indicates that a major source of disagreement is not the label type 

(e.g., Object in Path vs. Surface Problem) but rather the pixels highlighted by the 

outline shape. We emphasize, however, that pixel outlines for even the same object 

across labelers will rarely agree perfectly; the key then, is to determine what level of 

Pixel-Level Label 
Specificity 

Correctness Measure Image Comparisons 
Researchers (N=3, 

I=229) 
Wheelchair Users  

(N=3, I=75) 

Researchers vs. 
Wheelchair Users 

(N=2 groups, I=75) 

Binary  
Classification 

Area  
Overlap 

Same  0.31 (0.21) 0.26 (0.22) 0.27 (0.21) 

Different 0.02 (0.05) 0.01 (0.04) 0.01 (0.04) 

F-Measure 
Same  0.43 (0.25) 0.37 (0.26) 0.38 (0.26) 

Different 0.03 (0.08) 0.02 (0.06) 0.03 (0.07) 

Multiclass 
Classification 

Area  
Overlap 

Same  0.27 (0.21) 0.22 (0.22) 0.23 (0.21) 

Different 0.01 (0.03) 0.00 (0.02) 0.00 (0.02) 

F-Measure 
Same  0.38 (0.26) 0.32 (0.27) 0.33 (0.27) 

Different 0.01 (0.05) 0.01 (0.04) 0.01 (0.04) 

Table 4.4: The results of our pixel level agreement analysis (based on [123]) between the researchers, 

wheelchair users, and researchers compared to wheelchair users. Similar to Table 4.1, the rightmost column 

is majority vote data. Cell format: average (stdev). 
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overlap and f-measure scores are acceptable and good. Our results suggest that overlap 

scores of 0.31 and 0.27 and f-measure scores of 0.43 and 0.38 for binary and multiclass 

classification respectively are indicative of what a motivated and diligent annotator can 

achieve. We emphasize that even 10-15% overlap agreement at the pixel level would 

be sufficient to confidently localize problems in images; however, this level of 

consistency may not be sufficient for training computer vision. We return to this point 

in the discussion. 

4.5.4 Producing Ground Truth Datasets 

Finally, now that we have shown the feasibility of the labeling task and found 

reasonably high consistency amongst labelers, we can use these Study 1 labels to 

produce a ground truth dataset for evaluating turker performance. We consolidate the 

labeling data from the three researchers into four unified ground truth datasets: binary 

and multiclass at both the image and the pixel level 

Consolidating Image-Level Labels: To combine image-level labels across the three 

labelers, we simply create a majority-vote “ground truth” dataset. Any image that 

received a label from at least two of the three researchers was assigned that label as 

“ground truth.”  
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Consolidating Pixel-Level Labels: Combining labels from the three researchers at the 

pixel level is less straightforward. The consolidation algorithm will directly impact the 

results obtained from our correctness measures. For example, if we combine 

highlighted pixel areas across all three researchers (union), then turker precision is 

 
Figure 4.6. Examples of ground truth labels. (a) All three researchers labeled the object blocking the path. 

One researcher labeled fallen leaf on the ground as a surface problem, but this label was filtered out by 

ground truth label consolidation process. (b) Labels of missing curb ramps by three researchers. (c) Three 

researchers labeled the end of the sidewalk as Prematurely Ending Sidewalk. 
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likely to go up but recall is likely to go down. If, instead, we take the intersection across 

all three labelers, the ground truth pixel area will shrink substantially, which will likely 

increase turker recall but reduce precision. Consequently, we decided to, again, adopt 

a majority vote approach. To produce the majority vote pixel-level dataset, we look for 

labels from at least two of the three researchers that overlap by 15% of their unioned 

area. The value of 15% was chosen because it is the lower-quartile cutoff using 

researcher overlap data. For binary classification, the label type was ignored—thus, any 

labels that overlapped by 15% or more were combined. For multiclass, the labels had 

to be of the same type.  

4.6 Study 2: Crowd Worker Performance 

To investigate the potential of using untrained crowd workers to label accessibility 

problems, we posted our task to Mechanical Turk during the summer of 2012. Each 

“hit” required labeling 1-10 images for 1-5 cents (0.5 to 5 cents per image). Each turker 

new to the task was required to watch at least half of a 3-minute instructional video, 

after which the labeling interface automatically appeared. Note: one task encompasses 

labeling one image. 

We first highlight high-level results before performing a more detailed analysis 

covering labeler count vs. accuracy, two quality control evaluations, and the best and 

worst performing images. For the analysis below, we do not consider severity ratings. 
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Instead, we leave this for future work. However, given that we found a high rate of 

false positives amongst the turker data, we did examine the effect of removing labels 

that received a severity rating of a 1 (Passable) or a 2 (Fairly Passable). Our findings 

did not change significantly as a result.  

 

 

Figure 4.7: Binary and multiclass performance at the image- and pixel-levels with varying majority vote 

group sizes. Each graph point is based on multiple permutations of the majority vote group size across all 

229 images. Standard error bars are in black (barely visible due to low variance). 
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4.6.1 High-Level Results 

In all, we hired 185 distinct turkers who completed 7,534 image labeling tasks and 

provided a total of 13,379 labels. Turkers completed an average of 41.5 tasks 

(SD=61.4); 20 turkers labeled only 1 image and 10 turkers labeled all 229. The median 

image labeling time was 33.3s (SD=89.0s) and the average number of labels per image 

was 1.54 (SD=1.46). When compared with our ground truth dataset, overall turker 

accuracy at the image level was 80.6% for binary classification and 78.3% for 

multiclass classification. At the pixel level, average area overlap was 20.6% and 17.0% 

for binary and multiclass, respectively. These numbers are reasonably close to the 

values of 27% and 23% that we saw for wheelchair users vs. researchers. 

4.6.2 Accuracy as a Function of Turkers per Image 

Collecting multiple annotations per image helps account for the natural variability of 

human performance and reduces the influence of occasional errors; however, it also 

requires more workers [168]. Here, we explore accuracy as a function of turkers per 

image. We expect that accuracy should improve as the number of turkers increases, but 

the question then, is by how much? To evaluate the impact of the number of turkers on 

accuracy, we collected labels from 28 turkers for each of our 229 images. We compare 

our majority vote ground truth data with majority vote data across five turker group 

sizes: 1, 3, 5, 7, and 9. Because we have 28 turkers per image, we can run the analysis 

multiple times for each group size and average the results. For example, when we set 

the majority vote group size to three, we randomly permute nine groups of three turkers. 
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In each group, we calculate the majority vote answer for a given image in the dataset 

and compare it with ground truth. This process is repeated across all images and the 

five group sizes, where (X=majority vote group size, Y=number of groups): (1,28), (3, 

 

 

Figure 4.8: (a and b) Show the effect of increasingly aggressive turker elimination thresholds at the image- 

and pixel-levels based on average multiclass performance of 5 images. Error bars are standard deviation (for 

blue) and standard error (for red). As the threshold increases, fewer turkers remain and uncertainty 

increases. (c) Compares the effectiveness of various quality control mechanisms on performance at the image 

level. 
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9), (5,5), (7, 4), (9, 3). To compute the majority vote answer for each group size, we 

use the same label consolidation process as that used for the researcher majority vote 

labels. 

We conducted this analysis at the image and pixel levels for binary and 

multiclass classification across our multiple correctness measures. Results are shown 

in Figure 4.7 (image and pixel level) and Table 4.5 (image level only). As expected, 

performance improves with turker count but these gains diminish in magnitude as 

group size grows. For example, at the image level, binary accuracy improves from 

80.6% to 86.9% with 3 turkers and to 89.7% with 5 turkers but only to 90.2% with 9 

turkers. For image-level multiclass, we see a similar trend. At the pixel level, the binary 

area overlap measure improves from 20.6% to 30.3% with 5 turkers but only to 31.4% 

with 9 turkers. Again, multiclass performance is similar (see Figure 4.7d). Even though 

group sizes beyond 5 continue to improve results at both the image and pixel level, this 

benefit may not be worth the additional cost.  

Note that for the pixel level, the recall score rises dramatically in comparison 

to other metrics. This is because the consolidated majority vote pixel area tends to grow 

Image-Level 
Label 

Specificity 
Label Maj Vote Size: 1 Maj Vote Size: 3 Maj Vote Size: 5 Maj Vote Size: 7 Maj Vote Size: 9 

Binary  
No Prob vs. 

Prob 
80.6 (0.1) 86.9 (0.3) 89.7 (0.2) 

90.6 (0.2) 90.2 (0.2) 

Multiclass 

No Curb Ramp 78.6 (0.1) 86.0 (0.1) 90.2 (0.3) 91.6 (0.2) 93.7 (0.3) 

Object in Path 73.0 (0.1) 78.1 (0.2)  81.3 (0.3) 82.2 (0.1) 83.4 (0.2) 

Sidewalk Ending 84.7 (0.1) 88.3 (0.1) 88.5 (0.4) 89.5 (0.4) 89.8 (0.3) 

Surface Problem 77.0 (0.1) 82.1 (0.2) 84.9 (0.3) 85.9 (0.4) 88.4 (0.3) 

Overall 78.3 (0.0) 83.8 (0.1) 86.8 (0.2) 86.6 (0.2) 87.9 (0.1) 

Table 4.5: Binary and multiclass label type accuracy at the image level across five majority vote group sizes. 

Cell format: avg% (stderr %). 
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with turker count (with more pixels labeled, recall will go up). Different consolidation 

processes will produce different results. Finally, similar to Study 1, Sidewalk Ending 

and No Curb Ramp labels performed better than Object in Path and Surface Problem 

(Table 4.5).  

4.6.3 Quality Control Mechanisms 

We explore two quality control approaches: filtering turkers based on a fixed threshold 

of acceptable performance and filtering labels based on crowdsourced validations 

collected through our verification interface. In both cases, we perform our analyses 

offline, which allows us to simulate performance with a range of quality control 

mechanisms.  

For the first approach, we explored the effect of eliminating turkers based on 

their average multiclass performance at both the image and pixel level. The goal here 

is to uncover effective performance thresholds for eliminating poor quality turkers. We 

assign measure of errors to image-level and pixel-level correctness by using a Monte 

Carlo-based resampling approach called Bootstrap [57]. We first eliminate all turkers 

from our dataset who had completed fewer than five tasks. We then take samples of the 

remaining 142 turkers with replacement. For each sampled turker we randomly select 

five tasks that s/he completed to measure their average multiclass accuracy (for image 

level) or multiclass overlap (for pixel level). We shift our elimination threshold by 

increments of 0.01 and reject turkers if their average performance is lower than this 

threshold. At each increment, we also calculate overall performance across all tasks 
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among the remaining turkers. We repeat this process independently at the image and 

pixel levels N=1000 times to calculate error bars.   

Results are shown in Figure 4.8 (a and b). In both figures, we see overall 

performance steadily increase as poor performing turkers get eliminated. However, the 

threshold where elimination takes effect differs between the two mechanisms due to 

differences in difficulty. For example, to achieve the same accuracy level as we would 

expect from majority vote with 3 turkers (0.84), the average performance elimination 

threshold needs to be 0.76 (marked in orange in the graph). At that threshold, image-

level multiclass accuracy amongst the remaining turkers goes up to 0.84, but at a cost 

of eliminating 51.2% of our workforce. For pixel-level data, to achieve a score similar 

to the average area overlap between researcher labels (0.27), the elimination threshold 

needs to be set to 0.08, which increases the overlap score from 0.24 to 0.27 but reduces 

our workforce by 15% (again, orange line in graph). Thus, as expected, our results show 

accuracy gains with increasingly aggressive elimination thresholds; however, these 

accuracy gains come at a cost of reducing the effective worker pool. We expect that 

future systems can use these results to identify poor performing turkers proactively 

during data collection via ground truth seed images (e.g., see [146]), and either offer 

additional training, or, in the extreme case, blacklist them. The threshold used depends 

on the accuracy needs of the application. 

For the subjective validation approach, we use our verification interface (Figure 

4.5). Here, turkers validate existing labels rather than provide new ones. We ensured 

that the same turker did not provide and validate the same image. As the validation task 
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is simpler than the labeling task, we batched 20 validations into a single hit at a cost of 

5 cents. We collected three or more validations per label across 75 images (the same 

subset used by the wheelchair users in Study 1). In all, we collected 19,189 validations 

from 273 turkers. Whereas the median time to label an image was 35.2s, the median 

 
Figure 4.9: A selection of the top and bottom three performing images in our dataset based on multiclass 

pixel-level area overlap. Left column: original GSV image; center column: majority vote ground truth from 

researchers using 15% overlap; right column: turker labels. Numbers show turker performance results for 

that image, from top to bottom: image-level binary, image-level multiclass; pixel-level binary, pixel-level 

multiclass.  
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time to validate a label was 10.5s. Thus, collecting validations is quicker and cheaper 

than collecting new labels. 

We performed a series of analyses with the validation data, using both majority 

vote validation and zero tolerance validation. For the latter, if any validator down-votes 

a label, that label is eliminated. We compare these results to no quality control 

(baseline), the use of majority vote labels, and a combination of majority vote labels 

plus subjective validation.  Results are in Figure 4.8. As before, performance improves 

with additional turkers—either as labelers or as validators. The best performing quality 

control mechanism was 3 labelers (majority vote) plus 3 validators (zero tolerance) 

beating out 5 labelers (majority vote). This suggests that it is more cost effective to 

collect 3 labels with validation than 5 labels total per image, particularly given that 

validation requires less effort. 

4.6.4 Best and Worst Performing Images 

Figure 4.9 shows a selection of the top and the bottom performing images based on 

pixel-level multiclass overlap. For the worst performing images, there are many false 

positives: utility poles and stop signs are labeled as obstacles even though they are not 

in the sidewalk path. Figure 4.9f highlights two additional common problems: first, 

sometimes problem types have ambiguous categories—in this case, the ground truth 

label indicates Sidewalk Ending while many turker labels selected Surface Problem; 

second, it is unclear how much of the problem area should be highlighted. For Sidewalk 

Ending, the ground truth labels highlight only the sidewalk termination point—some 
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turkers, however, would label this section and any beyond it with no sidewalk (thereby 

greatly reducing their pixel-level scores). Future interfaces could detect these mistakes 

and provide active feedback to the turker on how to improve their labeling. In contrast, 

for the best performing images, the accessibility problems are, unsurprisingly, more 

salient and the camera angle provides a relatively close-angle shot. 

4.6.5 Evaluation of Severity Scores 

We have thus far focused on assessing the accuracy of crowd worker-provided 

accessibility labels, but largely ignored their associated severity scores. In this 

subsection, we conduct an exploratory analysis of the five-point scale severity scores. 

We then evaluate the severity scores’ inter-rater agreements to discuss the utility of the 

data. 

Explorative Analysis. We first conduct an exploratory analysis of the severity 

scores of the crowd worker-provided labels using the same data mentioned in Study 2. 

Note, this analysis focuses on the severity scores of the following label types: Object 

in Path, Surface Obstacle, and Sidewalk Ending. We omit Missing Curb Ramp labels 

from the analysis because we did not ask crowd workers to provide severity scores for 

this category (all missing curb ramps are considered severe accessibility problems). 

After filtering out the Missing Curb Ramp labels, we had 9,170 labels in total (Object 

in Path: 5,106, Surface Obstacle: 2,868, Sidewalk Ending: 1,283). 

Because severity ratings are associated with corresponding polygonal labels, it 

is necessary to differentiate each label even they are on the same Street View image 
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and provided by the same crowd worker. Therefore, unlike the pixel-level accuracy 

analysis in which we “flattened” the polygonal labels into pixel level bitmap data, we 

retain each polygon and use it as a unit of analysis.  

 We use the “correct” crowdsourced labels for our analysis. In the accuracy 

analysis, we argued that 10-15% label area overlap is sufficient to judge if two labels 

are placed on the same accessibility feature on the given Street View image. Thus, we 

consider the crowd worker-provided labels that overlap with ground truth labels with 

more than 15% as correct and filter out the incorrect labels. We use one researcher’s 

labels as ground truth for simplicity; the ground truth consisted of 71 Object in Path, 

73 Surface Obstacle, and 48 Sidewalk Ending on 182 images. Overall, we had 2,513 

correct labels (Object in Path: 884, Surface Obstacle: 1,046, Sidewalk Ending: 583). 

On average, each researcher label had 14.4 corresponding correct crowdsourced labels 

(min=0, max=31, SD=6.9). 
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 Severity score distributions.Table 4.6 and the histograms in Figure 4.10 depict 

the severity score distributions of each accessibility feature type. For all problem types, 

the histograms show the skew toward more severe ratings (3, 4, and 5). The severity 

scores for Object in Path and Sidewalk Ending labels are especially skewed toward 5 

(i.e., “not passable”), suggesting that crowd workers rate these accessibility features as 

significant mobility problems. Note, however, we may have categorized some labels as 

“incorrect” (and thus filtered out) even crowd workers appropriately labeled them and 

gave low severity scores. That is, there could be cases where the researcher did not 

label a less severe problem, but a crowd worker labeled and rated the problem as 

“passable” (i.e., 1 or 2). Since these potentially valid labels are not separable from the 

labels that are actually inaccurate, we leave the assessment of these potentially valid 

labels as future work. Next, we evaluate the inter-rater agreement for severity scores. 

 

Figure 4.10. The histograms showing the distribution of severity scores associated with the correct labels 

provided by crowd workers. The raw counts are shown in Table 4.6.  

 
 Severity 

Label Type 1 2 3 4 5 
Object in Path 7 30 101 187 559 

Surface Obstacle 22 116 300 349 259 
Sidewalk Ending 0 6 47 99 431 

Table 4.6. The number of severity scores associated with correct crowd worker-provided accessibility labels. 
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 Inter-rater Agreement Study Method. To assess the utility of the severity 

scores, we evaluate the inter-rater agreements to measure their reliability. The 

agreement of ordinal data such as our five point scale severity scores is often measured 

using Cohen’s kappa or weighted kappa statistics [96]. Both agreement measures use a 

series of pairs of ordinal scores in their calculations, but a weighted kappa is a more 

relaxed measure compared to the original Cohen’s kappa. For example, a pair of scores 

(5, 4) is considered 75% agreement in a weighted measure, whereas it is strictly counted 

as disagreement in a non-weighted counterpart—see [38,96] for more details. We use 

both of these measures to assess the reliability of the severity scores. In addition, we 

report a raw agreement score (# pairs with same severity score / # all pairs) for each 

label type. We report both raw agreement score and kappa statistics to illustrate the 

effect of agreements by chance.  

 As hinted in the previous paragraph, measuring agreement requires at least two 

labels that are associated with the same accessibility feature. Of 192 ground truth labels, 

172 had at least two correct crowd worker labels (Object in Path: 59, Surface Obstacle: 

65, Sidewalk Ending: 48). The following evaluation is done using these correct labels 

that overlap with ground truth. 

 Evaluating agreement statistics with only one series of severity score pairs does 

not reflect general characteristics of agreement. Therefore, we use Monte-Carlo 

approach to measure average agreements and their variability just like the accuracy 

analysis in the previous section. More specifically, for each accessibility problem, we 
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randomly sample a pair of two crowd worker labels that overlap with ground truth. 

Using a series of severity scores of the sampled pairs, we compute above mentioned 

agreement statistics. We repeat this sampling process for 1,000 times to measure their 

means and standard deviations (Table 4.7). 

 

 Inter-rater Agreement Result and Discussion. Raw agreement varied from 

0.31 to 0.61 (Table 4.7). The raw agreements on Object in Path and Sidewalk Ending 

were higher compared to the raw agreement on Surface Problem. However, both 

Cohen’s kappa and weighted kappa suggest the agreements are weak (< 0.2) for all the 

label types [110]. The weighted kappas are slightly higher compared to corresponding 

unweighted measures. The fact that raw agreement scores are much higher than kappa 

statistics suggest that agreements are largely due to chance and the data distributions 

are skewed [139]. 

 Our result shows that severity rating on accessibility problems labeled by crowd 

workers can agree from 31% to 61%. However, this is mostly due to chance as the 

kappa statistics suggest; as visualized in Figure 4.10, crowd workers rate problems as 

severe most of the time, so the scores could agree with high probability if they pick 4 

or 5. This suggests that the scores of 4 or 5 themselves do not provide much information 

(i.e., whatever is labeled tend to be a severe accessibility problem). Future work should 

Label Type Raw Agreement Cohen's Kappa Weighted Kappa 
Object in Path (N=59) 0.48 (0.06) 0.05 (0.09) 0.11 (0.10) 

Surface Problem (N=65) 0.31 (0.06) 0.06 (0.07) 0.13 (0.08) 
Sidewalk Ending (N=48) 0.61 (0.06) 0.07 (0.11) 0.09 (0.11) 

Table 4.7. Inter-rater agreement scores for each label type. The values show averaged scores over 1,000 

Monte Carlo iterations with standard deviations in brackets. 
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assess the value of rare data like scores 1 and 2, and investigate if rare severity scores 

could be useful for, for example, filtering out incorrect labels or characterizing each 

crowd workers (e.g., can a person who label less severe problems and rate as “passable” 

be considered more dedicated?). 

4.7 Discussion and Conclusion 

In this chapter, we showed that untrained crowd workers could find and label 

accessibility problems in GSV imagery. We also highlighted the effect of common 

quality-control techniques on overall performance accuracies. Here, we discuss 

limitations of our study and opportunities for future work.  

We evaluated our approach with a manually curated database of images. Image 

quality was sometimes poor, either because of lighting conditions, which can often be 

auto-corrected, or blurriness. Camera angle was also fixed in our dataset. Providing 

multiple camera angles or even an interactive interface where users can control the 

camera angle should be explored; the GSV interface itself allows the user to control 

camera angle and zoom level. In part related to camera angle, future work should also 

explore how often sidewalks are obscured from view (e.g., from parked cars) in GSV. 

Other data sources could be used to lessen this problem, such as high-resolution top-

down satellite or fly-over imagery [174], volunteer-contributed geo-located pictures, 

or government 311 databases. GSV data can also be somewhat old (3.1 years in our 

dataset), a noted limitation in other virtual audit work as well [11]. Combining our GSV 

approach with other datasets should help mitigate this problem. 
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We did not take into account of the learning effect while creating the ground 

truth dataset. In Study 1, unlike experts (i.e., wheelchair users) who labeled 75 Street 

View images, the researchers labeled all 229. This might have affected the agreement 

levels between researchers and experts (e.g., the researchers were more accustomed to 

what accessibility problems are visible in Street View images). For the crowdsourcing 

study (Study 2), it would be an interesting future work to evaluate how fast crowd 

workers learn to correctly label accessibility features. 

While we captured important accessibility characteristics of sidewalks, other 

problems may exist. For example, the wheelchair users in Study 2 indicated that 

sidewalk narrowness can also reduce accessibility. We did not have a way of measuring 

sidewalk width or providing a tool to assess narrowness. Future work should look at 

the ability to calculate widths, which could, perhaps, be reconstructed via the multiple 

camera angles offered by GSV or derived from the 3D-point cloud data that modern 

GSV cars collect (see [9]). 

For quality control, future applications will obviously use a large majority of 

images where ground truth is unknown. Instead, “ground truth” seed images will need 

to be injected into the labeling dataset to actively measure turker performance (see 

[146]). Active monitoring will allow turkers to receive performance feedback, help 

assist them when they make common mistakes, and warn and, eventually, eliminate 

poor quality workers if they do not improve. Beyond turkers, we also build a volunteer-

based participatory website to both visualize our results and highlight areas that need 

data collection. We discuss this in Chapter 6. 
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Our general approach of collecting useful, street-level information in a scalable 

manner from GSV images has application beyond sidewalks. We would like to expand 

our approach to assess the accessibility of building fronts, friction strips and stop lights 

at intersections, and non-accessibility related topics such as tracking and labeling bike 

lanes in roadways. Finally, accessible public rights-of-way do not just offer benefits to 

people with disabilities, they are also generally safer and more user-friendly for all 

pedestrians [122]. Our work effectively demonstrates a promising new, highly scalable 

method for acquiring knowledge about sidewalk accessibility.  
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Chapter 5 Detecting Curb Ramps in Google Street View Using 

Crowdsourcing, Computer Vision, and Machine Learning 

This chapter describes our work on a system that combines crowdsourcing, computer 

vision, and machine learning to efficiently label curb ramps in Google Street View 

(GSV) images. The work was done in a collaboration with another graduate student Jin 

Sun and Prof. David Jacobs. Jin contributed in developing automated curb ramp 

detector.  This chapter has adapted and rewritten content from a paper at UIST 2014 

[84]. 

5.1 Introduction 

Previous work has examined how to leverage massive online map datasets such as GSV 

along with crowdsourcing to collect information about the accessibility of the built 

environment [73,77,80,81,82]. Early results have been promising; for example, using 

a manually curated set of static GSV images, we found that minimally trained crowd 

workers in Amazon Mechanical Turk (turkers) could find four types of street-level 

accessibility problems with 81% accuracy [81]. However, the sole reliance on human 

labor limits scalability. 

In this chapter, we present Tohme1, a scalable system for remotely collecting 

geo-located curb ramp data using a combination of crowdsourcing, computer vision 

                                                 

1
 Tohme is a Japanese word that roughly translates to “remote eye.” 
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(CV), machine learning, and online map data. Tohme lowers the overall human time 

cost of finding accessibility problems in GSV while maintaining result quality (Figure 

5.1). As the first work in this area, we limit ourselves to sidewalk curb ramps, which 

we selected because of their visual salience, geospatial properties (e.g., often located 

on corners), and significance to accessibility. For example, in a precedent-setting US 

court case in 1993, the court ruled that the “lack of curb cuts is a primary obstacle to 

the smooth integration of those with disabilities into the commerce of daily life” and 

that “without curb cuts, people with ambulatory disabilities simply cannot navigate the 

city” [1].  

While some cities maintain a public database of curb ramp information (e.g., 

[178,179]), this data can be outdated, erroneous, and expensive to collect. Moreover, it 

is not integrated into modern mapping tools. In a recent report, the National Council on 

Disability noted that they could not find comprehensive information on the “degree to 

which sidewalks are accessible” across the U.S. [132]. In addition, the quality of data 

available in government systems is contingent on the specific policies and technical 

 

 

 
Figure 5.1: In this section, we present Tohme, a scalable system for semi-automatically finding curb ramps 

in Google Streetview (GSV) panoramic imagery using computer vision, machine learning, and 

crowdsourcing. The images above show an actual result from our evaluation. 

 

(a) Raw Google Street View (GSV) image 

(b) Results of computer vision curb ramp 

detection (lighter red is higher confidence) 

(c) Results after crowdsourced verification 

TP=8; FP=10; FN=0 

TP=8; FP=0; FN=0 
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infrastructure of that particular local administration (e.g., at the city and/or county 

level). While federal US legislation passed in 1990 mandates the use of ADA-

compliant curb ramps in all new road construction and renovation [191], this is not the 

case across the globe. Our overarching goal is to design a scalable system that can 

remotely collect accessibility information for any city across the world that has 

streetscape imagery, which is now broadly available in GSV, Microsoft Bing Maps, 

and Nokia City Scene. 

Tohme is comprised of four custom parts: (i) a web scraper for downloading 

street intersection data; (ii) two crowd worker interfaces for finding, labeling, and 

verifying the presence of curb ramps; (iii) state-of-the-art CV algorithms for automatic 

curb ramp detection; and (iv) a machine learning-based workflow controller, which 

predicts CV performance and dynamically allocates work to either a human labeling 

pipeline or a CV + human verification pipeline. While Tohme is purely a data collection 

system, we envision future work that integrates Tohme’s output into accessibility-

aware map tools (e.g., a heatmap visualization of a city’s accessibility or a smart 

navigation system that recommends accessible routes).  

To evaluate Tohme, we conducted two studies using data we collected from 

1,086 intersections across four North American cities. First, to validate the use of GSV 

imagery as a reliable source of curb ramp knowledge, we conducted physical audits in 

two of these cities and compared our results to GSV-based audit data. As with previous 

work exploring the concordance between GSV and the physical world 
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[11,39,73,77,157], we found high correspondence between the virtual and physical 

audit data. Second, we evaluated Tohme’s performance in detecting curb ramps across 

our entire dataset with 403 turkers. Alone, the computer vision sub-system currently 

finds 67% of the curb ramps in the GSV scenes. However, by dynamically allocating 

work to the CV module or to the slower but more accurate human workers, Tohme 

performs similarly in detecting curb ramps compared to a manual labeling approach 

alone (F-measure: 84% vs. 86% baseline) but at a 13% reduction in human time cost.  

In summary, the primary contribution of this paper is the design and evaluation 

of the Tohme system as a whole, with secondary contributions being: (i) the first design 

and evaluation of a computer vision system for automatically detecting curb ramps in 

images; (ii) the design and study of a “smart” workflow controller that dynamically 

allocates work based on predicted scene complexity from GIS data and CV output; (iii) 

a comparative physical vs. virtual curb ramp audit study (Study 1), which establishes 

that GSV is a viable data source for collecting curb ramp data; and (iv) a detailed 

examination of why curb ramp detection is a hard problem and opportunities for future 

work in this domain. 

5.2 Dataset 

Because sidewalk infrastructure can vary in quality, design, and appearance across 

geographic areas, our study sites include a range of neighborhoods from four North 

American cities: Washington, D.C., Baltimore, Los Angeles, and Saskatoon, 
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Saskatchewan (Figure 5.2; Table 5.1). For each city, we collected data from dense 

urban cores (shown in blue) and semi-urban residential areas (shown in red). We 

emphasized neighborhoods with potential high demand for sidewalk accessibility (e.g., 

areas with schools, shopping centers, libraries, and medical clinics). 

We used two data collection approaches: (i) an automated web scraper tool that 

we developed called svCrawl, which downloads GIS-based intersection data, including 

GSV images, within a geographically defined region; and (ii) a physical survey of a 

subset of our study sites (four neighborhoods totaling 273 intersections), which was 

used to validate curb ramp infrastructure found in the GSV images. In all, we used 

svCrawl to download data from 1,086 intersections across 11.3km2 (Table 5.1).  

 
Figure 5.2: The eight urban (blue) and residential (red) audit areas used in our studies from Washington 

DC, Baltimore, LA, and Saskatoon. This includes 1,086 intersections across a total area of 11.3km2. Among 

these areas, we physically surveyed 273 intersections (see annotations in a-d). 

 WASHINGTON DC BALTIMORE LOS ANGELES SASKATOON OVERALL 

Region Type Downtown Residential Downtown Residential Downtown Residential Downtown Residential  

Total Area (km2) 1.52 1.13 0.73 2.24 1.91 1.89 0.74 1.13 11.28 

# of Intersections 140 124 132 139 132 132 141 146 1,086 

# of Curb Ramps* 818 352 476 229 358 186 321 137 2877 

# of Missing Curb 
Ramps* 

8 35 32 69 43 214 24 222 647 

Avg. GSV Data 
Age (SD) 

1.9 yrs 
(0.77) 

1.6 yrs 
(0.63) 

2.1 yrs 
(0.75) 

0.4 yrs 
(0.65) 

2.0 yrs 
(0.31) 

0.9 yrs 
(0.24) 

4.0 yrs  
(0.0) 

4.0 yrs  
(0.0) 

2.2  
(1.3) 

Table 5.1: A breakdown of our eight audit areas. Age calculated from summer 2013. *These counts are based 

on ground truth data.  
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To create a ground truth dataset, two members of our research team 

independently labeled all 1,086 scenes using our custom labeling tool (svLabel). Label 

disagreements were resolved by consensus. From the ground truth data, we discovered 

2,877 curb ramps and 647 missing curb ramps (Figure 5.3). Of the 1,086 scenes, 218 

GSV scenes did not require marking a curb ramp or missing curb ramp because the 

location was not a traditional intersection (e.g., an alleyway with no vertical drop from 

the sidewalk). These 218 scenes are useful for exploring false positive labeling 

behavior and were kept in our dataset. The remaining 868 intersections had on average 

3.3 curb ramps (SD=2.3) and 0.75 missing curb ramps (SD=1.3) per intersection. A 

total of 603/868 intersections were marked as not missing any curb ramps. We use the 

 

Figure 5.3. Example curb ramps (top two rows) and missing curb ramps (bottom row) from our GSV dataset 
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ground truth labels for training and testing our machine learning and CV algorithms 

and to evaluate crowd worker performance.  

At download time (summer 2013), the average age of the GSV images was 2.2 

years (SD=1.3). As image age is one potential limitation in our approach, it is necessary 

to first show that GSV is a reasonable data source for deriving curb ramp information, 

which we do next. 

5.3 Study 1: Assessing GSV as a data source 

To establish GSV as a viable curb ramp data source, we must show: (i) that it presents 

unoccluded views of curb ramps, (ii) that the curb ramps can be reliably found by 

humans and, potentially, machines, and (iii) that the curb ramps found in GSV 

adequately reflect the state of the physical world. This study addresses each of these 

points. Multiple studies have previously demonstrated high concordance between 

GSV-based audits and audits conducted in the physical world [11,39,73,77]; however, 

prior work has not examined curb ramps specifically. Though this audit study was labor 

intensive, it is important to establish GSV as a reliable data source for curb ramp 

information, as it is the crux of our system’s approach.  

We conducted physical audits in the summer of 2013 across a subset of our 

GSV dataset: 273 intersections spanning urban and residential areas in Washington, 

D.C. and Baltimore (Figure 5.2). We followed a physical audit process similar to Hara 

et al. [77]. Research team members physically visited each intersection, capturing geo-

timestamped pictures (Mean=15 per intersection; SD=5). These images were analyzed 
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post hoc for the actual audit. Surveying the 273 intersections took approximately 25 

hours as calculated by image capture timestamps.  

5.3.1 Auditing Methodology.  

For the auditing process itself, two additional research assistants (different from the 

above) independently counted the number of curb ramps and missing curb ramps at 

each intersection in both the physical and GSV image datasets. An initial visual 

codebook was composed based on US government standards for sidewalk accessibility 

[102,191]. Following the iterative coding method prescribed by Hruschka et al. [89], a 

small subset of the data was individually coded first (five intersections from each area). 

The coders then met, compared their count data, and updated the codebook 

appropriately to help reduce ambiguity in edge cases. Both datasets were then coded in 

entirety (including the original subset, which was recoded). This process was iterated 

until high agreement was reached.  

5.3.2 Calculating Inter-Rater Reliability between Auditors 

Before comparing the physical audit data to the GSV audit data, which is the primary 

goal of Study 1, we first calculated inter-rater reliability between the two coders for 

each dataset. We applied the Krippendorff’s Alpha (α) statistical measure, which is 

 PHYSICAL AUDIT IMAGE DATASET GSV AUDIT IMAGE DATASET 

 1st Pass (α) 2nd Pass (α) 3rd Pass (α) 1st Pass (α) 2nd Pass (α) 3rd Pass (α) 

Curb Ramp 0.959 0.960 0.989 0.927 0.928 0.989 
Missing C. Ramp 0.647 0.802 0.999 0.631 0.788 0.999 

Overall 0.897 0.931 0.996 0.883 0.917 0.996 

Table 5.2: Krippendorff’s alpha inter-rater agreement scores between two researchers on both the physical 

audit and GSV audit image datasets. Following Hruschka et al.’s iterative coding methodology, a 3rd audit 

pass was conducted with an updated codebook to achieve high-agreement scores—in our case, α > 0.996. 
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used for calculating inter-rater reliability of count data (see [107]). Results after each 

of the three coding passes using the iterative scheme from [89] are shown in Table 5.2. 

Agreement was consistently high, with the 3rd pass representing the reliability of codes 

in the final code set. There was initially greater inconsistency in coding missing curb 

ramps vs. coding existing curb ramps, perhaps because identifying a missing ramp 

requires a deeper under-standing of the intersection and proper ramp placement. 

5.3.3 Comparing Physical vs. GSV Audit Data 

With high agreement verified within each dataset, we can now compare the count 

scores between the datasets. Similar to [77,157], we calculate a Spearman rank 

correlation between the two count sets (physical and GSV). This was done for both the 

curb ramp and missing curb ramp counts. To enable this calculation, however, we first 

merged the two auditor’s counts by taking the average of their counts for missing curb 

ramps and the average for present curb ramps at each intersection. Using these average 

counts, a Spearman rank correlation was computed, which shows high correspondence 

between datasets: ρ=0.996 for curb ramps and ρ=0.977 for missing curb ramps (p < 

0.001). Overall, 1,008 curb ramps were identified in the virtual audit compared to 1,002 

with the physical audit; differences were due to construction. The number of missing 

curb ramps was exactly the same for both datasets (89).  

5.3.4 Study 1 Summary 

Though the age of images in GSV remains a concern, Study 1 demonstrates that there 

is remarkably high concordance between curb ramp infrastructure in GSV and the 
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physical world, even though the average image age of our dataset was 2.2 years. With 

GSV established as a curb ramp dataset source, we now move on to describing Tohme. 

5.4 A scalable system for Curb ramp detection 

Tohme is a custom-designed tool for remotely collecting geo-located curb ramp 

information using a combination of crowdsourcing, CV, machine learning, and online 

map data. It is comprised of four parts depicted in Figure 5.4: (i) a web scraper, Street 

View Crawl (svCrawl), for downloading street intersection data; (ii) two crowd worker 

interfaces for finding, labeling, and verifying the presence of curb ramps called svLabel 

and svVerify; (iii) state-of-the-art CV algorithms for automatically detecting curb ramps 

 

Figure 5.4. A workflow diagram depicting Tohme’s four main sub-systems. In summary, svDetect processes 

every GSV scene producing curb ramp detections with confidence scores. svControl predicts whether the 

scene/detections contain a false negative. If so, the detections are discarded and the scene is fed to svLabel for 

manual labeling. If not, the scene/detections are forwarded to svVerify for verification. The workflow 

attempts to optimize accuracy and speed.  
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(svDetect); and (iv) a machine learning-based workflow, called svControl, which 

predicts CV performance on a scenes and allocates work accordingly. 

We designed Tohme iteratively with small, informal pilot studies in our 

laboratory to test early interface ideas. We also performed larger experiments on 

Amazon Mechanical Turk (MTurk) with a subset of our data to understand how 

different interfaces affected crowd performance and, more generally, how well crowds 

could perform our tasks. The CV sub-system, svDetect, also evolved across multiple 

iterations, and was trained and evaluated using the aforementioned ground truth labels. 

While our ultimate goal is to deploy Tohme publicly on the web, the current prototype 

and experiments were deployed on MTurk. Below, we describe each Tohme sub-

system. 

5.4.1 svCrawl: Automatic Intersection Scraping 

svCrawl is a custom web scraper tool written in Python that downloads GIS-related 

intersection data over a predefined geographic region (Figure 5.2). It uses the Google 

Maps API (GMaps API) to enumerate and extract street intersection points within 

selected boundaries. For each intersection, svCrawl downloads four types of data:  

1. A GSV panoramic image at its source resolution (13,312 x 6,656px). This is our 

primary data element (e.g., Figure 5.1).  

2. A 3D-point cloud, which is captured by the GSV car using LiDAR [9]. The depth 

data overlays the GSV panorama but at a coarser resolution (512 x 256px; Figure 
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5.10). This is used by svDetect to automatically cull the visual search space and by 

svControl as an intersection complexity input feature. 

3. A top-down abstract map image of the intersection obtained from the Google 

Maps API (Figure 5.13), which is used as a training feature in our work scheduler, 

svControl, to infer intersection complexity (like the depth data).  

4. Associated intersection GIS metadata, also provided by the GMaps API, such as 

latitude/longitude, GSV image age, street and city names, and intersection 

topology.  

5.4.2 svLabel: Human-Powered GSV Image Labeling 

In Tohme, intersections are labeled either manually, via svLabel, or automatically via 

svDetect. svLabel is a fully interactive online tool written in JavaScript and PHP for 

finding and labeling curb ramps and missing curb ramps in GSV images (Figure 5.5-

 

Figure 5.5. A workflow diagram depicting Tohme’s four main sub-systems. In summary, svDetect processes 

every GSV scene producing curb ramp detections with confidence scores. svControl predicts whether the 

scene/detections contain a false negative. If so, the detections are discarded and the scene is fed to svLabel for 

manual labeling. If not, the scene/detections are forwarded to svVerify for verification. The workflow 

attempts to optimize accuracy and speed. 
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5.7). Unlike much previous crowd-sourcing GSV work, which uses static imagery to 

collect labels [73,80,81], our labeling tool builds on Bus Stop CSI [77] to provide a 

fully interactive 360 degree view of the GSV panoramic image. While this freedom 

increases user-interaction complexity, it allows the user to more naturally explore the 

intersection and maintain spatial context while searching for curb ramps. For example, 

 

Figure 5.6. The svLabel interface. Crowd workers use the Explorer Mode to interactively explore the 

intersection (via pan and zoom) and switch to the Labeling Mode to label curb ramps and missing curb 

ramps. Clicking the Submit button uploads the target labels. The turker is then transported to a new location 

unless the HIT is complete. 

 

Figure 5.7. svLabel automatically tracks the camera angle and repositions any applied labels in their correct 

location as the view changes. When the turker pans the scene, the overlay on the map view is updated and 

the green “explored” area increases (bottom right of interface). Turkers can zoom in up to two levels to 

inspect distant corners. Labels can be applied at any zoom level and are scaled appropriately. 
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the user can pan around the virtual 3D-space from one corner to the next within an 

intersection. 

Using svLabel. When a turker accepts our HIT, they are immediately greeted by a 

three-stage interactive tutorial. The stages progressively teach the turker about the 

interface (e.g., the location of buttons and other widgets), user interactions (e.g., how 

to label, zoom, and pan), and task concepts (e.g., the definition of a curb ramp). If 

mistakes are made, our tutorial tool automatically provides corrective guidance. 

Turkers must successfully complete one tutorial stage before moving on to the next. 

Once the tutorials are completed, we automatically position the turker in one of 

the audit area intersections and the labeling task begins in earnest. Similar to Bus Stop 

CSI [77], svLabel has two primary modes of interaction: Explorer Mode and Labeling 

Mode (Figure 5.6). When the user first drops into a scene, s/he defaults into Explorer 

Mode, which allows for exploration using Street View’s native controls. Users are 

instructed to pan around to explore the 360 degree view of the intersection and visual 

feedback is provided to track their progress (bottom-right corner of Figure 5.6). Note: 

users’ movement is restricted to the drop location. 

When the user clicks on either the Curb Ramp or Missing Curb Ramp buttons, 

the interface switches automatically to Labeling Mode. Here, mouse interactions no 

longer control the camera view. Instead, the cursor changes to a pen, allowing the user 

to draw an outline around the visual target—a curb ramp or lack thereof (Figure 5.5). 

We chose to have users outline the area rather than simply clicking or drawing a 

bounding box because the detailed outlines provide a higher degree of granularity for 
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developing and experimenting with our CV algorithms. Once an outline is drawn, the 

user continues to search the intersection. Our tool automatically tracks the camera angle 

and repositions any applied labels in their correct location as the intersection view 

changes. In this way, the labels appear to “stick” to their associated targets. Once the 

user has surveyed the entire intersection by panning 360 degrees, s/he can submit the 

task and move on to the next task in the HIT, until all tasks are complete.  

Ground Truth Seeding. A single HIT is comprised of either five or six intersections 

depending on whether it contains a ground truth scene (a scene is just an intersection). 

This “ground truth seeding” [146] approach is commonly used to dynamically examine, 

provide feedback about, and improve worker performance. In our case, if a user makes 

a mistake at a ground truth scene, after hitting the submit button, we provide visual 

feedback about the error and show the proper corrective action. The user must correct 

all mistakes before submitting a ground truth task. If no mistakes are detected, the user 

is congratulated for their good performance. In our current system, there is a 50% 

chance that a HIT will contain one ground truth scene. The user is not able to tell 

whether they are working on a ground truth scene until after they submit their work. 

5.4.3 svVerify: Human-Powered GSV Label Verification 

In addition to providing “curb ramp” and “missing curb ramp” labels, we rely on crowd 

workers to examine and verify the correctness of previously entered labels. This 
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verification step is common in crowdsourcing systems to increase result quality (e.g., 

[81,173]). svVerify (Figure 5.8) is similar to svLabel in appearance and general 

workflow but has a simplified interaction (clicking and panning only) and is for an 

easier task (clicking on incorrect labels).  

While we designed both svLabel and svVerify to maximize worker efficiency 

and accuracy, our expectation was that the verification task would be significantly 

faster than initially providing manual labels [173]. For verification, users need not 

perform a time-consuming visual search looking for curb ramps to label but rather can 

quickly scan for incorrect labels (false positives) to delete. And, unlike labeling, which 

requires drawing polygonal outlines, the delete interaction is a single click over the 

 
Figure 5.8. The svVerify interface is similar to svLabel but is designed for verifying rather than labeling. 

When the mouse hovers over a label, the cursor changes to a garbage can and a click removes the label. 

The user must pan 360 degrees before submitting the task.  
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offending label (similar to [194]). This enables users to rapidly eliminate false positive 

labels in a scene. 

To maintain verification efficiency, however, we did not allow the user to 

spatially locate false negatives. This would essentially turn the verification task into a 

labeling task, by asking users to apply new “curb ramp” or “curb ramp missing” labels 

when they noticed a valid location that had not been labeled. Instead, svVerify gathers 

information on false negatives at a coarser-grained level by asking the user if the current 

scene was missing any labels after s/he clicks the submit button. Thus, svVerify can 

detect the presence of false negatives in an intersection but not their specific location 

or quantity. 

Similar to svLabel, svVerify requires turkers to complete an interactive tutorial 

before beginning a HIT, which includes instructions about the task, the interface itself, 

and successfully verifying one intersection. Because verifications are faster than 

providing labels, we included 10 scenes in each HIT (vs. the 5 or 6 in svLabel). In 

addition, we inserted one ground truth scene into every svVerify HIT rather than with 

50% probability as was done with svLabel. Note that not all scenes are sent to svVerify 

for verification, as discussed in the svControl section below. We move now to 

describing the two more technical parts of Tohme: svDetect and svControl. 

5.4.5 svDetect: Detecting Curb Ramps Automatically 

While svLabel relies on manual labeling for finding curb ramps, svDetect attempts to 

do this automatically using CV. Because CV-based object detection is still an open 
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problem—even for well-studied targets such as cars [63] and people [48]—our goal is 

to create a system that functions well enough to reduce the cost of curb ramp detection 

vs. a manual approach alone.  

svDetect uses a three-stage detection process. First, we train a Deformable Part 

Model (DPM) [63], one of the most successful recent approaches in object detection 

(e.g., [60]), as a first-pass curb ramp detector. Second, we post-process the resulting 

bounding boxes using non-maximum suppression [120] and 3D-point cloud data to 

eliminate detector redundancies and false positives. Finally, the remaining bounding 

boxes are classified using a Support Vector Machine (SVM) [23], which uses features 

not leveraged by the DPM, further eliminating false positives.  

svDetect was designed and tested iteratively. We attempted multiple 

algorithmic approaches and used preliminary experiments to guide and refine our 

approach. For example, we previously used a linear SVM with a Histograms of 

Oriented Gradients (HOG) feature descriptor [83] but found that the DPM was able to 

recognize curb ramps with larger variations. In addition, we found that though the raw 

GSV image size is 13,312 x 6,656 pixels, there were no detection performance benefits 

beyond 4,096 x 2,048px (the resolution used throughout this paper). Because it helps 

explain our design rationale for Tohme, we include our evaluation experiments for 

svDetect in this section rather than later in the paper. 

First Stage: The Curb Ramp Deformable Part Model (DPM). DPMs are comprised 

of two parts: a coarse-grained model, called a root filter, and a higher resolution parts 
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model, called a parts filter. DPMs are commonly applied to human detection in images, 

which provides a useful example. For human detection, the root filter captures the 

whole human body while part filters are for individual body parts such as the head, 

hand, and legs (see [62]). The individual parts are learned automatically by the DPM—

that is, they are not explicitly defined a priori. In addition, how these parts can be 

positioned around the body (the root filter) is also learned and modeled via 

displacement costs. This allows a DPM to recognize different configurations of the 

human body (e.g., sitting vs. standing).  

In our case, the root filter describes the general appearance of a curb ramp while 

part filters account for individual components (e.g., edges of the ramp and transitions 

to the road). DPM creates multiple components for a single model (Figure 5.9) based 

on bounding box aspect ratios. We suspect that each component implicitly captures 

different viewpoints of a curb ramp. For our DPM, we used code provided by [67]. 

 

   

 

 

   

 

 

    

 

 (a) Root filter (b) Parts filter (c) Displacement costs  

Figure 5.9. The trained curb ramp DPM model. Each row represents an automatically learned viewpoint 

variation. The root and parts filter visualize learned weights for the gradient features. The displacement costs 

for parts are shown in (c). 
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Second Stage: Post-Processing DPM Output. In the second stage, we post-process the 

DPM output in two ways. First, similar to [120], we use non-maximum suppression 

(NMS) to eliminate redundant bounding boxes. NMS is common in CV and works by 

greedily selecting bounding boxes with high confidence values and removing 

overlapping boxes with lower scores. Overlap is defined as the ratio of intersection of 

the two bounding boxes over the union of those boxes. Based on the criteria established 

by the PASCAL Visual Object Classes challenge [61], we set our NMS overlap 

threshold to 50%.  

Our second post-processing step uses the 3D-point cloud data to eliminate curb 

ramp detections that occur above the ground plane (e.g., bounding boxes in the sky are 

removed). To do so, the 512 x 256px depth image is resized to the GSV image size 

(4096 x 2048px) using bilinear interpolation. For each pixel, we calculate a normal 

vector and generate a mask for those pixels with a strong vertical component. These 

pixels correspond to the ground plane. Bounding boxes outside of this pixel mask are 

eliminated (Figure 5.10 and 5.11).  

 

 
Figure 5.10. Using code from [205], we download GSV’s 3D-point cloud data and use this to create a ground 

plane mask to post-process DPM output. The 3D depth data is coarse: 512 x 256px. 



 

 

130 

 

Third Stage: SVM-Based Classification. Finally, in the third stage, the remaining 

bounding boxes are fed into an additional classifier: an SVM. Because the DPM relies 

solely on gradient features in an image, it does not utilize other important discriminable 

information such as color or position of the bounding box. Given that street 

intersections have highly constrained geometrical configurations, curb ramps tend to 

occur in similar locations—so detection position is important. Thus, for each bounding 

box, we create a feature vector that includes: RGB color histograms, the top-left and 

bottom-right corner coordinates of the bounding box in the GSV image along with its 

width and height, and the detection confidence score from the DPM detector. We use 

the SVM as a binary classifier to keep or discard detection results from the second 

stage. 

svDetect Training and Results. Two of the three svDetect stages require training: the 

DPM in Stage 1 and the SVM in Stage 3. For training and testing, we used two-fold 

cross validation across the 1,086 GSV scenes and 2,877 ground truth curb ramp labels. 

The GSV scenes were randomly split in half (543 scenes per fold) with one fold initially 

assigned for training and the other for testing. This process was then repeated with the 

training and testing folds switched. 

To train the DPM (Stage 1), we transform the polygonal ground truth labels into 

rectangular bounding boxes, which are used as positive training examples. DPM uses 

a sliding window approach, so the rest of the GSV scene is treated as negative examples 

(i.e., comprised of negative windows). For each image in the training set, the DPM 

produces a set of bounding boxes with associated confidence scores. The number of 
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bounding boxes produced per scene is contingent on a minimum score threshold. This 

threshold is often learned empirically (e.g., [1]). A high threshold would produce a 

small number of bounding boxes, which would likely result in high precision and low 

recall; a low threshold would likely lead to low precision and high recall.   

To train the SVM (Stage 3), we use the post-processed DPM bounding boxes 

from Stage 2. The bounding boxes are partitioned into positive and negative samples 

by calculating area overlap with the ground truth labels. Though there is no universal 

standard for evaluating “good area overlap” in object detection research, we use 20% 

overlap (from [64]). Prior work suggests that even 10-15% overlap agreement at the 

pixel level would be sufficient to confidently localize accessibility problems in images 

[81]. Thus, positive samples are boxes that overlap with ground truth by more than 

20%; negative samples are all other boxes. We extract the aforementioned training 

features from both the positive and negative bounding boxes. Note that SVM 

 

Figure 5.11. Example results from svDetect’s three-stage curb ramp detection framework. Bounding boxes 

are colored by confidence score (lighter is higher confidence). As this figure illustrates, setting the detection 

threshold to -0.99 results in a relatively low false negative rate at a cost of a high false positive rate (false 

negatives are more expensive to correct). Many false positives are eliminated in Stages 2 and 3. The effect of 

Stage 2’s ground plane mask is evident in (b). Acronyms: TP=true positive; FP=false positive; FN=false 

negative 
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parameters (e.g., coefficient for slack variables) are automatically selected by grid 

search during training. 

Results. To analyze svDetect’s overall performance and to determine an appropriate 

confidence score cutoff for svDetect, we stepped through various DPM detection 

thresholds (from -3-to-3 with a 0.01 step) and measured the results. For each threshold, 

we calculated true positive, false positive, and false negative detections for each scene. 

True positives were assessed as bounding boxes that had 20% overlap with ground truth 

labels and that had a detection score higher than the currently set threshold. The results 

are graphed on a precision-recall curve in Figure 5.12. To balance the number of true 

 
Figure 5.12.  The precision-recall curve of the three-stage curb ramp detection process constructed by 

stepping through various DPM detection thresholds (from -3-to-3 with a 0.01 step). For the final svDetect 

module, we selected a DPM detection threshold of -0.99, which balances true positive detections with false 

positives.  
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positive detections and false positives in our system, we selected a DPM detection 

threshold of -0.99. At this threshold, svDetect generates an average of 7.0 bounding 

boxes per intersection (SD=3.7); see Figure 5.11 for examples. Note: svDetect failed 

to generate a bounding box for 15 of the 1,086 intersections. These are still included in 

our performance comparison. 

In the ideal, our three-stage detection framework would have both high 

precision and high recall. As can be observed in Figure 5.12, this is obviously not the 

case as ~20% of the curb ramps are never detected (i.e., the recall metric never breaches 

80%). With that said, automatically finding curb ramps using CV is a hard problem due 

to viewpoint variation, illumination, and within/between class variation. This is why 

Tohme combines automation with manual labor using svControl. 

5.4.6 svControl: Scheduling Work via Performance Prediction 

svControl is a machine-learning module for predicting CV performance and assigning 

work to either a manual labor pipeline (svLabel) or an automated pipeline with human 

verification (svDetect + svVerify)—see Figure 5.4. We designed svControl based on 

three principles: first, that human-based verifications are fast and relatively low-cost 

compared to human-based labeling; second, CV is fast and inexpensive but error prone 

both in producing high false positives and false negatives; third, false negatives are 

more expensive to correct than false positives. 

From these principles, we derived two overarching design questions: first, given 

the high cost of human labeling and relative low-cost of human verification, could we 
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optimize CV performance with a bias towards a low false negative rate (even if it meant 

an increase in false positives)? Second, given that false negatives cannot be eliminated 

completely from svDetect, can we predict their occurrence based on features of an 

intersection and use this to divert work to svLabel instead for human labeling? 

Towards the first question, biasing CV performance towards a certain rate of false 

negatives is trivial. It is simply a matter of selecting the appropriate threshold on the 

precision/recall curve (recall that the threshold that we selected was -0.99). The second 

question is more complex. We iterated over a number of prediction techniques and 

intersection features before settling on a linear SVM and Lasso regression model [180] 

with the following three types of input features:  

 svDetect results (16 features): For each GSV image, we include the raw number 

of bounding boxes output from svDetect, the average, median, standard deviation, 

and range of confidence scores of all bounding boxes in the image, and descriptive 

statistics for their XY-coordinates. Importantly, we did not use the correctness of 

the bounding box as a feature since this would be unknown during testing. 

 Intersection complexity (2 features): We calculate intersection complexity via two 

measures: cardinality (i.e., how many streets are connected to the target intersection) 

and an indirect measure of complexity, for which we count the number of street 

pixels in a stylized top-down Google Map. We found that high pixel counts correlate 

to high intersection complexity (Figure 5.13). 
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 3D-point cloud data (5 features): svDetect struggles to detect curb ramps that are 

distant in a scene—e.g., because the intersection is large or because the GSV car is 

in a sub-optimal position to photograph the intersection. Thus, we include 

descriptive statistics of depth information of each scene (e.g., average, median, 

variance). 

We combine the above features into a single 23-dimensional feature vector for training 

and classification. 

    

    
Figure 5.13. We use top-down stylized Google Maps (bottom row) to infer intersection complexity by counting 

black pixels (streets) in each scene. A higher count correlates to higher complexity 

 Turkers 
GSV 

Scenes 
HITs Tasks 

Avg. Turkers / 
Intersection 

Label Stats Avg. Task Time 

SVLABEL 242 1,046 1,270 6,350 6.1 (0.6) 
20,789 labels  

(17,327CRs, 3,462MCRs) 
94.1s (144.4s) 

SVVERIFY 161 1,046 582 5,820 5.6 (0.6) 
42,226 verified labels 

(28,801RLs, 13,425KLs) 
43.2 (48.7s) 

Table 5.3: An overview of the MTurk svLabel and svVerify HITs. While Tohme’s svControl system would, 

in practice, split work between the svLabel and svDetect+svVerify pipelines, we fed every GSV scene to both 

to perform our analyses. Acronyms above include CRs=Curb Ramps; MCRs=Missing Curb Ramps; 

RLs=Removed Labels; KLs=Kept Labels. svVerify was 2.2x faster than svLabel. 
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svControl Training and Test Results. We train and test svControl with two-fold cross 

validation using the same train and test data as used for svDetect. Given that the goal 

of svControl is to predict svDetect performance, namely the occurrence of false 

negatives, we define a svDetect failure as a GSV scene with at least one false negative 

curb ramp detection. The SVM model is trained to make a binary failure prediction 

with the aforementioned features. Similarly, the Lasso regression model is trained to 

predict the raw number of false negatives of svDetect (regression value > 0.5 is failure).  

To help better understand the important features in our models, we present the 

top three correlation coefficients for both. For the SVM, the top coefficients were the 

label’s x-coordinate variance (0.91), the mean confidence score of automatically 

detected labels (0.69), and the minimum scene depth (0.67). For the Lasso model, the 

top three were mean scene depth (0.69), median scene depth (-0.28), and, similar to the 

SVM, the mean confidence score of the automatically detected labels (0.21). If either 

the SVM or the Lasso model predicts failure on a particular GSV scene, svControl 

routes that scene to svLabel instead of svVerify.  

svControl Results. We assessed svControl’s prediction performance across the 1,086 

scenes. While not perfect, our results show that svControl is capable of identifying 

svDetect failures with high probability—we correctly predicted 397 of the 439 svDetect 

failures (86.3%); however, this high recall comes at a cost of precision: 404 of the total 

801 scenes (50.4%) marked as failures were false positives. Given that we designed 

svControl to be conservative (i.e., pass more work to svLabel if in doubt about 
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svDetect), this accuracy balance is reasonable. Below, we examine whether this is 

sufficient to provide performance benefits for Tohme. 

5.5 Study 2: Evaluating Tohme 

To examine the effectiveness of Tohme for finding curb ramps in GSV images and to 

compare its performance to a baseline approach, we performed an online study with 

MTurk in spring 2014. Our goal here is threefold: first, and most importantly, to 

investigate whether Tohme provides performance benefits over manual labeling alone 

(baseline); second, to understand the effectiveness of each of Tohme’s sub-systems 

(svLabel, svVerify, svDetect, and svControl); and third, to uncover directions for future 

work in preparation for a public deployment. 

5.5.1 Tohme Study Method 

Similar to Hara et al. [81], we collected more data than necessary in practice so that we 

could simulate performance with different workflow configurations post hoc. To allow 

us to compare Tohme vs. feeding all scenes to either workflow on their own (svLabel 

and svDetect+svVerify), we ran all GSV scenes through both. To avoid interaction 

effects, turkers hired for one workflow (labeling) could not work on the other 

(verifying) and vice versa.  

Second, to more rigorously assess Tohme and to reduce the influence of any 

one turker on our results, we hired at least three turkers per scene for each workflow 

and used this data to perform Monte Carlo simulations. More specifically, for both 

svControl Prediction Accuracy and Task Allocation 

 

svControl Prediction Accuracy and Task Allocation 

 

svControl Prediction Accuracy and Task Allocation 

 

svControl Prediction Accuracy and Task Allocation 
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workflows, we randomly sampled one turker from each scene, calculated performance 

statistics (e.g., precision), and repeated this process 1,000 times. Admittedly, this is a 

more complex evaluation than simply hiring one turker per scene and computing the 

results; however, the Monte Carlo simulation allows us to derive a more robust 

indicator of Tohme’s expected future performance.  

Of the 1,086 GSV scenes (street intersections) in our dataset, we reserved 40 

for ground truth seeding, which were randomly selected from the eight geographic 

areas (5 scenes from each). We calculated HIT payment rates based on MTurk pilot 

studies: $0.80 for svLabel HITs (five intersections; $0.16 per intersection) and $0.80 

for svVerify (ten intersections; $0.08 per intersection). As noted in our system 

description, turkers had to successfully complete interactive tutorials before beginning 

the tasks. 

5.5.2 Analysis Metrics 

To assess Tohme, we used the following measures: 

 Label overlap compared to ground truth: as described in the svDetect section, we 

use 20% overlap as our correctness threshold (from [81]).  

 We calculate standard object detection performance metrics including 

precision, recall, and F-measure based on this 20% area overlap—the same overlap 

used by svDetect. 
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 Human time cost: cost is calculated by measuring completion times for each 

intersection in svLabel and svVerify.  

5.5.3 Tohme Study Results 

We first present high-level descriptive statistics of the MTurk HITs before focusing on 

the comparison between Tohme vs. our baseline approach (pure manual labeling with 

svLabel). We provide additional analyses that help explain the underlying trends in our 

results. 

Descriptive Statistics of MTurk Work. To gather data for our analyses, we hired 242 

distinct turkers for the svLabel pipeline and 161 turkers for the svVerify pipeline (Table 

5.3). As noted previously, all 1,046 GSV scenes were fed through both workflows. For 

svLabel, turkers completed 1,270 HITs (6,350 labeling tasks) providing 17,327 curb 

ramp labels and 3,462 missing curb ramp labels. For svVerify, turkers completed 582 

HITs (5,820 verification tasks) and verified a total of 42,226 curb ramp labels. On 

average, turkers eliminated 4.9 labels per intersection (SD=2.9). We hired an average 

of 6.1 (SD=0.6) turkers per intersection for svLabel and 5.6 (SD=0.6) for svVerify. 

Evaluating Tohme’s Performance. To evaluate Tohme’s overall performance, we first 

examined how well each pipeline would perform on its own across the entire dataset 

(1,046 scenes). This provides two baselines for comparison: (i) the svDetect + svVerify 

results show how well Tohme would perform if the svControl module passed all work 

to this pipeline and, similarly, (ii) the svLabel results show what would happen if we 

only relied on manual labor for finding and labeling curb ramps.  
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We found that Tohme achieved similar but slightly lower curb ramp detection 

results compared to the manual approach alone (F-measure: 84% vs. 86%) but with a 

much lower time cost (13% reduction); see Figure 5.14. As expected, while the 

svDetect + svVerify pipeline is relatively inexpensive, it performed the worst (F-

measure: 63%). These findings show that the svControl module routed work 

appropriately to maintain high accuracy but at a reduced cost. Tohme reduces the 

average per-scene processing time by 12 seconds compared to svLabel alone. The 

overall task completion times were 12.3, 27.3, and 23.7 hours for svDetect + svVerify, 

svLabel, and Tohme respectively.   

The above results were calculated using the aforementioned Monte Carlo 

method. If we, instead, use only the first turker to arrive and complete the task, our 

results are largely the same. The F-measures are 63%, 86%, and 85% respectively for 

svDetect + svVerify, svLabel, and Tohme with a 10% drop in cost for Tohme (rather 

 

Figure 5.14: Tohme achieves comparable results to a manual labeling approach alone but with a 13% 

reduction in task completion time cost. Error bars are standard deviation. 
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than 13%). This includes 65 distinct turkers for svDetect + svVerify, 97 for svLabel, 

and 149 for Tohme.  

Task Allocation by svControl. As the workflow scheduler, the svControl module is a 

critical component of Tohme. Because the svVerify interface does not allow for 

labeling (e.g., correcting false negatives), the svControl system is conservative—it 

routes most of the work to svLabel otherwise many curb ramps would possibly remain 

undetected. Of the 1,046 scenes, svControl predicted svDetect to fail on 769 scenes 

(these results are the same as presented in the svControl section but with the 40 ground 

truth scenes removed). Thus, 73.5% of all scenes were routed to svLabel for manual 

work and the rest (277) were fed to svVerify for human verification (Figure 5.15). 

Again, svControl’s true positive rate is high: 86%. However, if svControl worked as a 

perfect classifier, 439 scenes would have been forwarded to svLabel and 607 to 

svVerify. In this idealized case, Tohme’s cost drops to 27.7% compared to a manual 

labeling approach with the same F-measure as before (84%). Thus, assuming limited 

 
Figure 5.15:  svControl allocated 769 scenes to svLabel and 277 scenes to svVerify. 379 out of 439 scenes 

(86.3%) where svDetect failed were allocated “correctly” to svLabel. Recall that svControl is conservative in 

routing work to svVerify because false negative labels are expensive to correct; thus, the 86.3% comes at a 

high false positive cost (390). 

This is work that could have been 
routed to svVerify but was sent to 
svLabel (svControl is overly 
conservative) 

 
Low false negative rate indicates 
tasks were correctly routed 
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improvements in CV-based curb ramp detections in the near future, a key area for future 

work will be improving the workflow control system.  

Where Humans and Computers Struggle. The key to improving both CV and human 

labeling performance is to understand where and why each sub-system makes mistakes. 

To assess the detection accuracy of human labelers, we calculated the average F-

measure score per scene based on the average number of true positives (TP), false 

positives (FP), and false negatives (FN). For example, if the average for a scene was 

(TP, FP, FN) = (1, 1, 2), then (Precision, Recall, F-measure) = (0.5, 0.3, 0.4). For CV, 

we simply used the F-measure score for each scene based on our svDetect results. We 

sorted the two F-measure lists and visually inspected the best and worst performing 

scenes for each. For the top and bottom 10, the average F-measure scores were 99% 

and 0% for CV and 100% and 25% for human labeling respectively. Common problems 

are summarized in Figure 5.16. 

Crowd workers struggled with labeling distant curb ramps (scale) or due to 

placement and angle (viewpoint variation). To mitigate this, future labeling interfaces 

could allow the worker to “walk” around the intersection to select better viewpoints 

(similar to [77]); however, this will increase user-interaction complexity and labeling 

time. Perhaps as should be expected, crowd workers were much more adept at dealing 

with occlusion than CV—even if a majority of a curb ramp was occluded, a worker 

could infer its location and shape (e.g., middle occlusion picture). CV struggled for all 

the reasons noted in Figure 5.16. Given the tremendous variation in curb ramp design 

and capture angles, a larger training set may have improved our results. Moreover, 
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because multiple views of a single intersection are available in GSV via neighboring 

panoramas, these additional perspectives could be combined to potentially improve 

scene structure understanding and mitigate issues with occlusion, illumination, scale, 

and viewpoint variation. The semantic issues—e.g., confusing structures similar to curb 

ramps—are obviously much more difficult for CV than humans. We describe other 

areas for improvement in the Discussion. 

Effect of Area Overlap Threshold on Performance. As noted previously, there is no 

universal standard for selecting an area overlap threshold in CV; this decision is often 

domain dependent. To investigate the effect of changing the overlap threshold on 

performance, we measured precision, recall, and F-measure at different values from 0-

50% at a step size of 10% (Figure 5.17). For overlap=0%, at least 1px of a detected 

bounding must overlap with a ground truth label to be considered correct. 

      

      

      
Figure 5.16: Finding curb ramps in GSV imagery can be difficult. Common problems include occlusion, 

illumination, scale differences because of distance, viewpoint variation (side, front, back), between class 

similarity, and within class variation. For between class similarity, many structures exist in the physical world 

that appear similar to curb ramps but are not. For within class variation, there are a wide variety of curb 

ramp designs that vary in appearance. White arrows are used in some images to draw attention to curb 

ramps. Some images contain multiple problems. 

Occlusion Illumination 

Scale Viewpoint Variation 

Structures Similar to Curb Ramps Curb Ramp Design Variation 
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A few observations: first, as expected, performance decreases as the overlap 

threshold increases; however, the relative performance difference between Tohme and 

baseline (svLabel) stays roughly the same. For example, at 0% overlap, the (Precision, 

Recall, F-measure) of Tohme is (85%, 89%, 87%) and (86%, 90%, 88%) for svLabel 

and at 50% overlap, (54%, 55%, 55%) vs. (57%, 59%, 58%). Thus, Tohme’s relative 

performance is consistent regardless of overlap threshold (i.e., slightly poorer 

performance but cheaper). Second, there appears to be a more substantial performance 

drop starting at ~30%, which suggests that obtaining curb ramp label agreement at the 

pixel level between human labelers and ground truth after this point is difficult. Finally, 

though svDetect + svVerify has much greater precision than svDetect alone, this 

increase comes at a cost of recall—a gap which widens as the overlap threshold 

becomes more aggressive. So, though human verifiers help increase precision, they are 

imperfect and sometimes delete true positive labels. 

 

 

   

 

Figure 5.17: As expected, performance drops as the area overlap threshold increases; however, the relative 

difference between Tohme and baseline (svLabel) remains consistent. 
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5.6 Discussion 

Our research advances recent work using GSV and crowdsourcing to remotely collect 

data on accessibility features of the physical world (e.g., [73,77,80,81]) by integrating 

CV and a machine learning-based workflow scheduler. We showed that a trained CV-

based curb ramp detector (svDetect) found 63% of curb ramps in GSV scenes and fast, 

human-based verifications further improved the overall results. We also demonstrated 

that a novel machine-learning based workflow controller, svControl, could predict CV 

performance and route work accordingly. Below, we discuss limitations and 

opportunities for future work. 

 
Figure 5.18: In the quickVerify interface, workers could randomly verify CV curb ramp detection patches. 

After providing an answer for a given detection, the patch would “explode” (bottom left) and a new one would 

load in its place. Though fast, verification accuracies went down in an experiment of 160 GSV scenes and 59 

turkers. 
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5.6.1 Improving Human Interfaces 

How much context is necessary for verification? We were surprised that verification 

tasks were only 2.2x faster than labeling tasks. Though we attempted to design both 

interfaces for rapid user interaction, there is some basic overhead incurred by panning 

and searching in the 360-degree GSV view. In an attempt to eliminate this overhead, 

we have designed a completely new type of verification interface, quickVerify, that 

simply presents detected bounding boxes in a grid view  (Figure 5.18). Similar to the 

facial recognition verifier in Google Picasa, these boxes can be rapidly confirmed or 

rejected with a single-click and a new bounding box appears in its place. In a 

preliminary experiment using 160 GSV scenes and 59 distinct turkers, however, we 

found that accuracy with quickVerify dropped significantly. Unlike faces, we believe 

that curb ramps require some level of surrounding context to accurately perceive their 

existence. More work is needed to determine the appropriate amount of surrounding 

view context to balance speed and accuracy. 

Improving human labeling. Human labeling time could be reduced if point-and-click 

interactions were used for labeling targets rather than outlining; however, as 

demonstrated in Figure 5.16, curb ramps vary dramatically in size, scale, and shape. 

Clicking alone would be insufficient for CV training. Moreover, labeling will always 

be more costly than verification because it is a more difficult task (i.e., finding elements 

in an image requires visual search and a higher mental load). With that said, we 

currently discard all svDetect bounding boxes—even those with a high confidence 

score—when a scene is routed to svLabel. Future work should explore how to, instead, 
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best utilize this CV data to improve worker performance (e.g., by showing detected 

bounding boxes with high scores to the user or as a way to help verify human labels). 

Finally, similar to quickVerify, future work could explore GSV panorama labeling that 

is not projected onto a 3D-sphere but is instead flattened into a 2D zoomable interface 

(e.g., [106]) or specially rendered to increase focus on intersection corners. 

5.6.2 Improving Automated Approaches  

As the first work in automatically detecting curb ramps using CV, there are no prior 

systems with which to directly compare our performance. Having said that, there is 

much room for improvement and advances in CV will only increase the overall efficacy 

of our system. 

Improving CV-based curb ramp detection. Interesting areas of future work include: (i) 

Context integration. While we use some context information in Tohme (e.g., 3D-depth 

data, intersection complexity inference), we are exploring methods to include broader 

contextual cues about buildings, traffic signal poles, crosswalks, and pedestrians as 

well as the precise location of corners from top-down map imagery. (ii) 3D-data 

integration. Due to low-resolution and noise, we currently use 3D-point cloud data as 

a ground plane mask rather than as a feature to our CV algorithms. We plan to explore 

approaches that combine the 3D and 2D imagery to increase scene structure 

understanding (e.g., [87]). If higher resolution depth data becomes available, this may 

be useful to directly detect the presence of a curb or corner, which would likely improve 

our results. (iii) Training. Our CV algorithms are currently trained using GSV scenes 
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from all eight city regions in our dataset. Given the variation in curb ramp appearance 

across geographic areas, we expect that performance could be improved if we trained 

and tested per city. However, in preliminary experiments, we found no difference in 

performance. We suspect that this is due to the decreased training set size. In the future, 

we would like to perform training experiments to study the effects of per-city training 

and to identify minimal training set size. Relatedly, we plan to explore active learning 

approaches where crowd labels train the system over time.  

Improving the workflow controller. While our current workflow controller focuses on 

predicting CV performance, future systems should explore modeling and predicting 

human worker performance and adapting work assignments accordingly. For example, 

struggling workers could be fed scenes that are predicted to be easy, or hard scenes can 

be assigned to more than one worker to take majority vote [47,99]. Similar to CV 

detection, per-city training and active learning should also be explored. 

Who pays? The question of who will pay for data collection (or if payment is even 

necessary) in the future is an important, unresolved one. Our immediate plans are to 

build an open website where anyone can contribute voluntarily as described in the next 

section. From conversations with motor impaired (MI) persons and the accessibility 

community as a whole (e.g., non-profit organizations, families of those with MI), we 

believe there is a strong demand for this system. For example, with a public version of 

Tohme, a concerned, motivated father could easily label over 100 intersections in his 

neighborhood in a few hours. A website akin to walkscore.com could then visualize 
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the accessibility of that neighborhood using heatmaps and also calculate accessible 

pedestrian routes. 

5.6.3 Limitations 

There are two primary limitations to our work. First, there is a workload imbalance 

between svLabel and svDetect. svLabel gathers explicit data on both curb ramps and 

missing curb ramps while svDetect only detects the former. It is likely that if the 

svLabel task involved only labeling curb ramps, the labeling task completion time 

would go down, which would affect our primary results. And, while the lack of a 

detected curb ramp could be equated to a missing curb ramp label for svDetect, we 

have not yet performed this analysis. Clearly, more explorations are needed here but 

we believe our initial examinations are sufficient to show the potential of Tohme. 

Second, there is no assessment of how our curb ramp detection results compare to 

traditional auditing approaches (e.g., performed by city governments). Anecdotally, we 

have found many errors in the DC government curb ramp dataset [178]; however, more 

research is necessary to uncover whether our approach is faster, cheaper, and/or more 

accurate. Ultimately, Tohme must produce sufficiently good data to enable new types 

of accessibility-aware GIS applications (e.g., pedestrian directions routed through an 

accessible sidewalk path).  
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5.7 Summary  

This chapter introduced our preliminary work on the design and evaluation of new 

crowd-powered data collection methods. Completely manual methods were introduced 

to show the feasibility of using crowdsourcing and GSV to collect accessibility data. 

We have also introduced a data collection tool, Tohme, for semi-automatically 

detecting curb ramps in GSV images using crowdsourcing, computer vision, and 

machine learning. Thus far, we have shown that paid crowd workers recruited from 

Amazon Mechanical Turk can find and label accessibility attributes in GSV with 

accuracy of 81%. We have further shown that by combining crowdsourcing, CV, and 

ML-based smart workflow controller, we can increase data collection efficiency by 

13% without sacrificing accuracy. In the next chapter, we describe the research we 

propose to work on next.  
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Chapter 6 Volunteer-sourced Accessibility Data Collection and 

Development of Assistive Location-based Technologies 

This chapter describes our work on design and development of volunteer-based street-

level accessibility data collection system. 

6.1 Introduction 

Despite the proliferation of location-based services and tools driven by rich 

geographical information (e.g., car navigation [147], GIS-based urban environment 

modeling [138]), existing technologies have largely ignored to support people with 

mobility impairments [79,135]. As we explored in the formative interview study in 

Chapter 3, lack of capabilities to query and explore accessibility of places affect 

mobility impaired people’s decisions to travel.  

Absence of accessibility-aware location-based technologies—what we call 

assistive location-based technologies (ALTs)—is predominantly due to the lack of 

comprehensive data about the accessibility of the physical environment  [132,176]. 

Emerging work (e.g., [3,73] as well as our own work described in the previous 

chapters) are starting to address this issue by introducing  methods to collect street-

level accessibility data with paid crowdsourcing. However, even paid micro task 

crowdsourcing can be insufficiently scalable, and it remains expensive for creating a 

large dataset [97]. 
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Because the cost is bound to the fact that we rely on paid-crowdsourcing, we 

investigate the feasibility of utilizing volunteer contribution to collect the street-level 

accessibility information. Our goal is similar to the existing volunteered geographic 

information (VGI) platforms (e.g., OpenStreetMaps) that elicit contribution of many 

anonymous online volunteers to collect geographical information 

[74,75,76,140,141,142]. In this chapter, we build a VGI system by extending the 

crowdsourcing system described in the previous chapters, performed a pilot study with 

volunteers, and study how the said system is being used by the volunteers. As a 

preliminary study of the VGI system, we focus on studying the volunteers’ activities 

and their labeling accuracies. 

As a pilot study, we invited volunteer contribution via word-of-mouth and by 

emailing government organizations in Washington, D.C. from June 2016. As of August 

2016, 154 volunteers contributed and we have collected 13,782 accessibility features 

from 2,864 street segments in the D.C. neighborhoods, which is equivalent to 20% of 

the entire D.C. streets. 

 To show the value of the street-level accessibility data that are collected with 

the VGI, we demonstrate two ALTs. First, we develop an online map visualization tool 

that shows Washington, D.C.’s street-level accessibility levels. Second, we use the 

accessibility data as an analytic tool to investigate relationship between neighborhoods’ 

accessibility levels and other socio-economic characteristics (e.g., income levels). The 

ALTs that we demonstrate are enabled by a repository of street-level accessibility data 

that is made publicly available via online REST APIs.  
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In summary, the contributions of this chapter are: (i) development and 

preliminary deployment of the VGI system that enable us to build a large repository of 

street-level accessibility data, (ii) the first of its kind neighborhood accessibility data 

that is made publicly available through the REST APIs, (iii) a pilot study using 

volunteers and an analysis of their system use and collected data, and (iv) 

demonstration of the utility of the collected accessibility data through embodiment of 

two ALTs 

6.2 Study Site  

To illustrate the utility of the Project Sidewalk platform, we selected Washington, D.C.  

as a study site (Figure 6.1). D.C. is uniquely suited for this research because of the 

city’s economic and geographical characteristics. According to the U.S. census (2015), 

672k people live in D.C. [22], many commute daily into the city from the commuter 

towns, and over twenty million people travel into the city every year [49]; making the 

capital one of the biggest city in the U.S. and important site to be accessible. The large 

city area (158km2 / 61mi2 [22]) makes collecting data less trivial, so it is a good test 

site to study the feasibility of our data collection method at scale. Finally, close 

proximity to the University of Maryland campus makes it easy for us to physically visit 

the neighborhood if needed. 

We describe our work on mapping the accessibility of 179 D.C. neighborhoods 

(Figure 6.1b). Using the web tool that we describe below, we ask volunteers to explore 

the streets in these neighborhoods. Volunteers are instructed to label street-level 



 

 

154 

 

 

Figure 6.1. Geometry data used in this study: (a) D.C. city boundary, (b) neighborhoods, and (c) street 

segments. 
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accessibility features in Google Street View (GSV) images (a process that we call 

accessibility audits). In total, we had 15,014 street segments (Figure 6.1c) in D.C. 

according to the data downloaded from OpenStreetMap (we describe the process of 

extracting street segments from the dataset in the next section). The total street length 

is 1,874km (1,164mi). Because our accessibility data collection method relies on the 

presence of Street View images, we filter out 892 street segments where GSV images 

are not available (e.g., streets within government facilities and hospitals), which 

reduced the street distance to 1,740 km (1,081mi). 

6.3 VGI System for Accessibility Data Collection 

Informed by our four-year iterative design experience in building GSV-based 

accessibility data collection tools, we designed and developed a VGI system to collect 

the street-level accessibility data. Volunteers were asked to explore the streets in D.C. 

and find and label accessibility attributes using SVLabel v.2—a web application that 

allows users to explore the Street View environment and find and label accessibility 

features in GSV images (Figure 6.2). SVLabel v.2 extends the previous version of the 

labeling interface [84]: (i) it allows users to label accessibility features such as 

obstacles, surface problems, and missing sidewalks in addition to curb ramps and 

missing curb ramps that were available in v.1 described in the previous chapter; (ii) it 

uses the geographical dataset downloaded from OpenStreetMap to provide guidance 

(e.g., navigation message) to navigate users to walk along the streets to explore the 

street-level accessibility. 
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6.3.1 Geographical Dataset 

Keeping track of which streets have been audited by volunteers requires us to have data 

about streets in D.C. To this end, we use OpenStreetMap street data from the area 

within the city boundary (Figure 6.1a). We extract <way> elements with trunk, 

primary, secondary, tertiary, or residential tag that represent topology of 

major streets [136], as well as accompanying <node> and <nd> elements that contained 

geographical information (i.e., latitude-longitude coordinates). Because a <way> 

element often represents a street ranging multiple city blocks, we split it into multiple 

segments at each intersection. As a result, we had 15,014 street segments (Figure 6.1c). 

The total street length was 1,874km (1,164mi). The distance was computed after 

projecting the coordinates into EPSG:26918—a geographical coordinate system for the 

eastern U.S. region [150]. Because our accessibility data collection relies on Street 

View images, we filtered out 892 street segments where GSV were not available (e.g., 

streets within government facilities and hospitals). This made the total street distance 

1,740 km (1,081mi). 

Having street segment data not only allows us to keep track of which street 

segments have been audited, but also aids us to manage distributed micro human work. 

To partition a large task of auditing the entire D.C. into smaller discrete subtasks, we 

use neighborhood polygonal data and street segment data (Figure 6.1b and c). The city 

area was broken down into 179 neighborhoods based on the 2010 Washington, D.C. 

census tracts [54]. We describe how we use this data to manage micro tasks in more 

details in Section 6.3.3. 
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Figure 6.2. SVLabel v.2 has two modes. (a) Users can use the Explorer Mode to pan around to explore the 

location and click white arrows to move to the adjacent Street View locations. (b) Switching to the Labeling 

Mode allows them to label curb ramps, missing curb ramps, obstacles, surface problems, and other 

accessibility features. 
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The neighborhood polygons and street segments were stored in PostgreSQL 

database with a PostGIS spatial database extension. Both neighborhood polygonal data 

and street segment data were transformed into Polygons and LineStrings in Well-

Known Binary (WKB) geometry format in an EPSG:4326 coordinate system—a 

commonly used format for storing GIS data.  

6.3.2 Exploration and Labeling in SVLabel v.2 

SVLabel v.2 is an interactive browser-based application for finding and labeling street-

level accessibility features (Figure 6.2). SVLabel v.2 builds on the previous version of 

the image labeling tool described in Chapter 5. The tool provides interactive 360 degree 

views of the Street View panoramic image. The interface lets the users to label 

accessibility feature of the following types: Curb Ramp, Missing Curb Ramps, 

Obstacle, Surface Problems, and Other. Under the Other category, there are sub-

categories Can’t See Sidewalk, No Sidewalk, and Other, where users can describe the 

type of accessibility feature. 

Similar to the prior version of the tool, SVLabel v.2 has two primary modes of 

interaction: Explorer Mode and Labeling Mode (Figure 6.2 a&b). When the user first 

drops into a scene, s/he defaults into Explorer Mode, which allows for exploration using 

Street View’s native control. Users are instructed to pan around to observe the street-

level environment and are navigated to walk along streets. Users could either double 

click the Street View images, click white arrows (Figure 6.2a), or hit arrow keys to 

move to desired directions.  
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When the user clicks on one of the accessibility feature buttons in the ribbon 

menu, the interface switches automatically to Labeling Mode. Here, mouse interactions 

no longer control the camera view or allow the user to walk to another Street View 

location. Instead, the cursor changes to a stamp that indicates the selected accessibility 

feature type, allowing the users to drop the stamp on the visual target (Figure 6.2b). 

Unlike the previous version where users were asked to outline the area, the interface 

instructed the users to simply click on the visual target. The labeling interaction was 

simplified to optimize for the speed; while the decision has a drawback that we cannot 

collect granular data to train computer vision-based accessibility feature detection 

algorithms, interaction is faster (about 23% faster for labeling [80]) and the collected 

data is sufficient to identify the geolocations of accessibility features.  

Once the user labels an accessibility feature on a Street View image, a context 

menu pops up and prompts the user to provide optional fine-grained properties 

including severity rating, description, and checkbox to indicate a temporary problem 

(Figure 6.3). The collected labels are submitted to our server periodically as well as 

upon browser unload (e.g., closing the browser tab).  

Once the user labels the target on the Street View image, the labeled 

accessibility feature is also visualized on Google Maps pane (Figure 6.4). Our labeling 

application uses three types of data to estimate the geolocation of the labeled 

accessibility features: the labeled stamp’s XY-coordinate on the Street View image, the 

Street View’s 3D point cloud data (Figure 6.5), and the geographical coordinate of the 

Street View camera. To project the label on the Street View image to a point on the 
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map, our application takes the following steps: (a) find the label’s XY-coordinate on 

the GSV image (Figure 6.6a);  (b) find the corresponding point on the 3D point cloud 

data and extracts the point’s displacement from the Street View camera center (Figure 

6.6b); and (c) compute the label’s latitude-longitude coordinate from the Street View 

camera’s geographical coordinate and the displacement information (Figure 6.6c). 

Note, the 3D point cloud data is interpolated with bilinear interpolation because the 

data is 676x coarser compared to the Street View image. For example, GPS positioning 

alone could cause 8m of error [214].  

Interactive Tutorial. Because navigating the Street View environment and labeling 

accessibility features are complex user interactions, a volunteer who uses the interface 

for the first time is greeted by an interactive tutorial (Figure 6.7 a-d). The a step-by-

step tutorial was designed to teach how to (a) select label types, (b) label accessibility 

features on Street View images, (c) pan-and-zoom to look around and find accessibility 

features, and (d) move from one Street View image to another. The design of the 

 

Figure 6.3. A context menu prompts the user to provide 

additional information for the labeled feature, including its 

quality/severity, temporariness, and description 

 

Figure 6.4. The feature labeled on the 

image is projected to geographical 

coordinate and visualized on the map 
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tutorial was informed by our experiences building tutorials in prior work [77,84]. Once 

the tutorial was completed, we automatically positioned the volunteer in one of the 

audit area and interface initiated the auditing task. 

6.3.3 Guiding Volunteers in the Accessibility Audit Task 

Allowing volunteers to walk around in the Street View environment is the major change 

from the previous version of the SVLabel [84]. While this change lets users to observe 

sidewalk accessibility features from multiple angles and allow us to delegate 

complexity of selecting which Street View locations to audit, it adds an additional 

complexity to user interaction. Therefore, the application needs to break down the task 

into smaller, more consumable subtasks and provide guidance in order to support 

volunteers to complete audit tasks [33,104]. 

Mission and Progress Feedback. Providing people with a clear goal and 

providing feedback upon task completion can provides increase performance and offers 

a more playful, enjoyable experience [116,118]. We introduce missions in which 

volunteers are asked to audit predefined distance in a neighborhood (Figure 6.8a). 

Missions include auditing 1000ft, 2000ft, 4000ft, and every half a mile of the streets in 

each neighborhood. Upon completing each mission, the interface provides the 

 

Figure 6.5. Our JavaScript application downloads Google Street View’s 3D-point cloud data and use this 

compute the geographical coordinates of the labeled accessibility features.  
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summary of the mission contribution, which visualizes the audited streets, numbers of 

accessibility features collected, and distance audited (Figure 6.8b).  

Neighborhoods. When a volunteer participates for the first time, our 

application selects one of the 179 D.C. neighborhoods in a round-robin fashion and 

assign it to the volunteer. Because we expected some volunteers would prefer to audit 

specific neighborhoods, they could select which neighborhoods in D.C. they want to 

audit (e.g., volunteers who lived in one neighborhood wanted to audit the accessibility 

of their neighborhood).  

  Audit Routes. Street segments intersecting the assigned neighborhood are used 

to determine a route to audit. The volunteers are instructed to follow the routes and audit 

the accessibility of the streets along the way. The audit route is computed greedily from 

a collection of the street segments; street segments that have not been audited by the 

user were selected to form the route. Occasionally, the generated route guided volunteers 

to walk outside of the neighborhood or lead to dead-end where street segments are not 

available. In those cases, volunteers were jumped back into the assigned neighborhood.  

 

Figure 6.6. Computing a label’s geographical coordinate. (a) Find the label’s image coordinate on the Street 

View image (xim, yim). (b) Find the corresponding point on the 3D point cloud data and extract the 

displacement of the label point from the Street View camera center (x, y, z). (c) Compute the label’s latitude-

longitude coordinate from the Street View camera’s latitude-longitude coordinate and the label’s 

displacement (x, y). 
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To present the audit route to the volunteers, the application visualizes the audit 

route on the Google Maps pane and the compass describes which direction to walk to 

(Figure 6.9). On the Google Maps pane, the unaudited street segments are visualized 

as red paths and the audited paths are colored green. A message such as “Walk straight” 

and “Turn right” were showed in the compass to instruct the user which way to walk.  

 

Figure 6.7. The interactive onboarding tutorial. The tutorial progressively teaches volunteers (a) to select 

accessibility feature types from the menu, (b) click on the Street View images to label accessibility features, 

(c) drag the Street View to look around the environment, and (d) double click on the Street View to move to 

different locations.  
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Figure 6.8. The mission information. (a) The interface presents users the mission which describes the 

immediate objective. (b) Upon mission completion, the interface presents the summary of the accessibility 

audit tasks completed during the mission. 
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6.4 Evaluation of Volunteered Geographical Information 

We deployed our system and invited volunteer contributors to help us collect 

accessibility data in Washington, D.C. (sidewalk.umiacs.umd.edu). As a preliminary 

work, we performed a soft-rollout with small number of volunteers. To invite 

volunteers to contribute to the data collection, we advertised the platform via word of 

mouth as well as contacted D.C. government organizations. We also reached out to 

undergraduate students at the University of Maryland to participate in the study for 

extra credit assignments.  

 

Figure 6.9. User guidance. The SVLabel interface navigates the user along the computed route with a compass 

which shows a directional icon and a description of which way to walk (left) to and path visualization on the 

Google Maps pane (right). 
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6.4.1 Volunteer Participation 

As of July 24th 2016, 154 volunteers participated and covered 20% of the street 

segments in Washington, D.C. 56 were anonymous volunteers with distinct IP 

addresses and 98 were registered volunteers. Of the 98 registered volunteers, 56 were 

undergraduate students who completed at least 2mi of accessibility audit. These 

students were compensated with extra credits for their courses. 

In total, 2,864 street segments, which is worth 346 km (215 miles) of streets, 

were audited by at least one volunteer and 13,782 accessibility labels were collected 

(10,298 curb ramps, 1,199 missing curb ramps, 549 obstacles, 455 surface problems, 

1,221 No Sidewalk, 40 Occlusion, and 20 Other types). Of 179 neighborhoods, 1 of 

them were 100% covered. On average, 23.5% of streets in each neighborhood were 

covered (the figure is slightly higher than the overall average due to the streets shared 

by multiple neighborhoods). Of 2,864 street segments, 2,734 were audited by registered 

volunteers. Each registered volunteer audited 31.8 street segments on average 

(SD=20.4, max=95, min=1). 

6.4.2 Accessibility Data Accuracy 

To assess the accuracy of the collected accessibility data, we randomly selected 100 

street segments that were audited by volunteers. Fifty four distinct registered volunteers 

provided the accessibility data for these street segments, The accessibility features 

labeled in these streets are compared against the researcher-generated ground truth 

labels. To create the ground truth labels, one researcher labeled each of the 100 street 
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segments. Because volunteer labels and ground truth labels could be labeled from 

different Street View images, we first projected all the accessibility features labeled on 

GSV images to latitude-longitude coordinates using Street View’s 3D point cloud data 

(Figure 6.5 and Figure 6.6). 

Based on the ground truth label, 97 streets (out of 100 streets) had curb ramps, 

33 streets had missing curb ramps, 32 streets had obstacles, 27 had surface problems, 

and 35 had no sidewalks. On the other hand, volunteers identified 95 streets with curb 

ramps, 59 streets with missing curb ramps, 45 streets with obstacles, 36 streets with 

surface problems, and 26 no sidewalks. Volunteers also reported occlusions in 6 streets 

and 3 user provided accessibility feature types were submitted, but we omitted them 

from analysis because of their small numbers. 

Following the image-level evaluation in Chapter 4, we calculate the accuracy, 

precision, and recall based on the presence and absence of the accessibility features. 

Instead of assessing the presence or absence of labels within curated static images, we 

 

Figure 6.10. A street segment (left) and segment buffer (right). For each street segment used in the accuracy 

assessment, we created a 10m buffer polygon and checked presence accessibility features in this buffer. 
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assessed the presence and absence of accessibility labels in a street segment buffer 

(Figure 6.10).  

We found that the overall accuracy of the volunteer labels was 76% when 

compared to the ground truth label (Figure 6.11). Accuracy for each label type was 

(Curb Ramp, No Curb Ramp, Obstacle, Surface Problem, No Sidewalk) = (98%, 68%, 

67%, 71%, 81%). The most dominant curb ramp labels were labeled accurately. We 

also computed precision and recall for overall and per label type—see Figure 6.11. 

Although we cannot directly compare, the results of the image-level evaluations 

Chapter 4, we look into the results to contrast the results. There, we had image-level 

accuracies of (No Curb Ramp, Obstacle, Surface Problem, No Sidewalk) = (79%, 73%, 

85%, 85%). Note that we did not measure the curb ramp accuracy in the evaluation in 

Chapter 4, and we used a label type Prematurely Ending Sidewalk instead of No 

 

Figure 6.11. Accessibility audit accuracy. Overall accuracy was 77% when compared to researcher labels. 

Volunteers accurately labeled curb ramps, but label accuracy for other label types were lower. For the most 

of the accessibility problems, recall were higher than precision, indicating the over labeling characteristics of 

volunteer labels.  
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Sidewalk.  The accuracies were consistently higher in the previous study. We believe 

this is because we used the curated static images for the labeling tasks in Chapter 4 

whereas volunteers were asked to explore, find, and label accessibility features in this 

study, which is arguably more difficult.  We discuss the results in more detail in the 

Discussion section. 

6.5 Accessibility Data Repository 

The collected street-level accessibility data is processed and served to client 

applications as either a set of accessibility features or Access Scores—abstract scores 

that represent the accessibility levels of given regions. In this section, we describe how 

we process the collected accessibility data, methods for computing Access Scores, and 

the designs of APIs that are used to serve the data to client applications. 

6.5.1 Accessibility Data Processing 

The accessibility features that are labeled by volunteers are processed to be served to 

client applications. First, because volunteers could label accessibility features in 

different Street View locations, multiple labels that are projected to latitude-longitudes 

 

Figure 6.12. A curb ramp labeled from multiple angles. (a&b) A single curb ramp was labeled in two 

consecutive GSV images. (c) The two labels are projected to latitude-longitude coordinates and plotted on 

Google Maps as two distinct curb ramps, so they need to be clustered together to avoid double counting.  
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could represent a single sidewalk accessibility feature (Figure 6.12). To remove 

duplicate labels, we use their latitude-longitude coordinates to cluster and merge them 

into a single label. Two or more labels that are apart by less than a given threshold are 

clustered together. The threshold distance is set to 10m to take into account of GPS 

errors (see [214]).  

6.5.2 Access Score 

We design Access Scores, abstract quantitative measures of the built environment 

accessibility levels. Access Scores are computed with the processed street-level 

accessibility data. As this is the first work that uses a large geographical data to quantify 

accessibility, we introduce two simple computational methods to quantify per-street 

and per-neighborhood Access Scores—Access Score: Street and Access Score: 

Neighborhood. Both scores have ranges between [0, 1], where 0 represents inaccessible 

and 1 represents accessible.  

Access Score: Street (ASstreet) models the accessibility level of a given street. 

Inaccessible streets with many accessibility problems should be scored low, and vice 

versa. To reflect this heuristics, we count the number of accessibility features along the 

streets. A buffer with a 10m (32ft) radius is created around a given street segment 

(Figure 6.10), and the accessibility features within this buffer are counted to construct 

the accessibility feature vector (𝒙𝒂). For example, if there are 6 curb ramps, 5 missing 

curb ramps, 0 obstacle, and 1 surface problem, then 𝒙𝒂 = (6, 5, 0, 1). We then take a 

dot product of the accessibility feature vector and a user-provided significance vector 
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(𝒘𝒔), a vector that represents the importance of each accessibility feature type. Each 

element of the significance vector has a value between 0 and 1, and its polarity (+/-) 

depends on whether it is a positive or negative accessibility feature (i.e., a curb ramp is 

a positive feature and all the other accessibility problems are negative features). 

Because the range of the dot product could be anywhere between (−∞, ∞), we map it 

to (0, 1) using a sigmoid function. To be concrete, ASstreet of a given street is computed 

by:  

𝐴𝑆𝑠𝑡𝑟𝑒𝑒𝑡 = 1 1 + exp (−𝑤𝑠 ∙ 𝑥𝑎)⁄  (Eq. 6.1) 

For example, with a significance vector (Curb Ramp, No Curb Ramp, Obstacle, Surface 

Problem) = (1.0, -1.0, -1.0, -1.0) and accessibility feature vector (6, 5, 0, 1), the 

resulting Access Score is 0.27. This reflects the fact that the street is less accessible due 

to the multiple missing curb ramps and a surface problem. 

An accessibility level of a neighborhood should take into account of 

accessibility levels of all the streets within the area. To this end, we compute Access 

Score of a given neighborhood (ASneighborhood) by taking the mean ASstreet of all the 

streets intersecting the given neighborhood polygon. It can be written as: 

𝐴𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 =  
1

𝑛
∑ 𝐴𝑆𝑠𝑡𝑟𝑒𝑒𝑡 (Eq. 6.2) 

Here, 𝑛 represents a number of street segments intersecting the given neighborhood. In 

the next section, we describe the APIs that serve the Access Score data to client 

applications. 
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6.5.3 API 

Clients access the repository of the collected accessibility data through a RESTful API, 

loading the appropriate endpoint URL and receiving GeoJSON data in return [24]. To 

serve accessibility data of varying geographical precision and data granularity, the 

repository provides three API endpoints serving data of varying geographical precision 

and data granularity: (i) Access Features, (ii) Access Score: Streets, and (iii) Access 

(a) Access Features (b) Access Score: Streets (c) Access Score: Neighborhoods 
GET:/v1/access/features?lat1=38.

9&lng1=-76.91&lat2=38.91&lng2=-

76.9 

GET:/v1/access/streets?lat1=38.9

&lng1=-76.91&lat2=38.91&lng2=-

76.9 

GET:/v1/access/neighborhoods?lat

1=38.9&lng1=-

76.91&lat2=38.91&lng2=-76.9 

   
{ 

 type: "FeatureCollection", 

 features: [ 

  { 

   type: "Feature", 

   geometry: { 

    type: "Point", 

    coordinates: [ 

     [-76.9851, 38.9116] 

    ], 

    properties: { 

    label_type: "NoCurbRamp", 

    panorama_id:  

     "uoEs-ZwoiNQyx9tcZlgOiQ" 

   } 

  },  

  … 

 ] 

} 

{ 

 type: "FeatureCollection", 

 features: [ 

  { 

  type: "Feature", 

  geometry: { 

   type: "LineString", 

   coordinates: [ 

    [-76.981969, 38.9007234], 

    [-76.9823201,38.9006129], 

    … 

   ] 

  }, 

  properties: { 

   street_edge_id: 93, 

   score: 0.9820, 

   significance: { 

    CurbRamp: 1, 

    NoCurbRamp: -1, 

    Obstacle: -1, 

    SurfaceProblem: -1 

   }, 

   feature: { 

    CurbRamp: 6, 

    NoCurbRamp: 2, 

    Obstacle: 0, 

    SurfaceProblem: 0 

   } 

  }, 

  … 

 ] 

} 

 

{ 
 type: "FeatureCollection", 

 features: [ 

 { 

  type: "Feature", 

  geometry: { 

   type: "Polygon", 

   coordinates: [ 

    [ 

     [-76.9808, 38.9040], 

     [-76.9809, 38.9040],  

     … 

    ] 

   ], 

  }, 

  properties: { 

   region_id: 273, 

   region_name: "Trinidad", 

   score: 0.9927, 

   significance: { 

    CurbRamp: 1, 

    NoCurbRamp: -1, 

    Obstacle: -1, 

    SurfaceProblem: -1 

   }, 

   feature: { 

    CurbRamp: 7.8658, 

    NoCurbRamp: 1.8780, 

    Obstacle: 0.4268, 

    SurfaceProblem: 0.6463 

   } 

  },  

  … 

 ] 

} 

Table 6.1. REST APIs to serve accessibility information. (a) Access Features API serves location data of 

accessibility features with their accessibility feature type. (b) Access Score: Streets API serves a set of street 

segments with corresponding Access Scores.. (c) Access Score: Neighborhoods API serves a set of 

neighborhood polygons with corresponding Access Scores.  
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Score: Neighborhoods. These APIs enable varying assistive location-based 

technologies. All APIs require a bounding box defined by a pair of latitude-longitude 

coordinates (i.e., (minlat, minlng), (maxlat, maxlng)) as a parameter to specify the 

region of interest. In addition, Access Score: Streets and Access Score: Neighborhoods 

APIs take optional significance vector as a parameter. 

i. Access Features API serves a set of geographical coordinates that represent 

where and what accessibility features exist (Table 6.1a). The data served by 

this API enables a client application to present what makes a region of 

interest accessible or inaccessible. The data is represented as a Feature 

Collection of Points in the GeoJSON format. 

ii. Access Score: Streets API serves street segments enclosed in a given 

bounding box together with ASstreet computed using the Eq. 6.1. Because 

significance of each accessibility feature varies between people with 

different mobility levels, the API allows users to specify each feature’s 

significance in a scale of [0, 1]. The API returns the data as a Feature 

Collection of LineStrings in the GeoJSON format (Table 6.1b). 

iii. Access Score: Neighborhoods API provides neighborhood polygons 

enclosed in a given bounding box with corresponding ASneighborhood 

computed by Eq. 6.2. Similar to Access Score: Streets API, users can 

specify each feature’s significance in a scale of [0, 1]. The data is 

represented as a Feature Collection of Polygons in the GeoJSON format 

(Table 6.1c). 
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6.6 Assistive Location-based Technologies 

The assistive location-based technologies enabled by the collected street-level 

accessibility data could be used by people with mobility impairments and other 

interested users such as policy makers who are responsible for compliance with ADA. 

In this section, we present two proof-of-concept ALTs to demonstrate the value of the 

collected accessibility data. 

6.6.1 Access Map 

Access Score: Neighborhoods API and Access Features API enable an Access Map, a 

choropleth map that allows mobility impaired people to quickly explore accessibility 

of different parts of D.C. (Figure 6.13). The geographical visualization could be useful 

to find a neighborhood that is easy to live/stay and locate cafes and stores in accessible 

neighborhoods. The GeoJSON data served by the APIs is visualized with our proof-of-

 

Figure 6.13. Access Map. The choropleth map visualizes accessibility levels of the D.C. neighborhoods using 

the data from Access Score: Neighborhoods API. The neighborhoods are colored in green they are accessible 

and red if they are inaccessible. When a user zoom in, accessibility feature points from Access Feature API 

are visualized. The neighborhoods with audit coverage < 50% are colored in gray to show that we do not have 

sufficient data to compute ASneighborhoods.  
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concept web application, thought data can also be visualized with existing GIS tools 

(e.g., QGIS [227]). The application reads in the served neighborhood accessibility data 

and visualizes neighborhood polygons; it uses four colors to indicate accessibility 

levels from very inaccessible (red, AS ∈ [0, 0.25) ) to very accessible (green, AS ∈

[0.75, 1]). Neighborhoods that have less than 50% audit coverage are colored gray to 

indicate that the data is not available yet.  

Because the impacts of different accessibility features vary among people with 

different mobility levels, our proof-of-concept application provides a set of range 

sliders to adjust the significance of each accessibility feature. The Access Map gets 

updated dynamically when the significance changes. 

In addition to the choropleth map that visualizes the overview of neighborhood 

accessibility, Access Map also lets users to explore why a certain neighborhood has 

high/low Access Score by visualizing data from Access Features API. The accessibility 

features’ locations are visualized as points on the map (Figure 6.13). These points are 

set visible only when the user zooms into an area of a map to reduce visual clutter. 

6.6.2 Accessibility Analytics 

Researchers are often interested in understanding the relationship between particular 

characteristics of neighborhoods, such as the neighborhood walkability and the real 

estate values [44], the socio-economic status and the health of the neighborhoods [66], 

and the means of transportation and the street connectivity [162]. For example, Saelens 

et al. surveyed studies that investigated correlation between people’s walking/cycling 
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activities and neighborhood characteristics such as population density, street 

connectivity, land use mix, and neighborhood socio-economic status to better 

understand what facilitates higher rates of walking/cycling [163]. Their survey revealed 

that population density is among the most consistent positive correlates of walking 

trips. As we can see in Saelen’s investigation and the studies that they surveyed 

[30,144,154], revealing the correlation (or lack thereof) between two factors advances 

our understanding of the relationship between them.  

To demonstrate the value of the collected accessibility data and Access Score 

as neighborhood accessibility analytic tools, we conduct a preliminary investigation of 

the relationship between ASneighborhood and 45 socio-economic statistics for D.C. 

neighborhoods from 2010 census (e.g., average household income, race and ethnic 

distribution, and unemployment)—see Table 6.2.  When socio-economic data of the 

same type were available from multiple points in time, we used the most recent data. 

For example, Total Population for each D.C. census tract is available for 1980, 1990, 

2000, and 2010. In this case, we used the data from 2010. 

Because some neighborhood socio-economic measures are non-continuous 

ordinal variables (e.g., a number of schools present in a neighborhood), we use 

Spearman’s rank correlation (rs) to assess the relationship between them and the 

ASneighborhood. We note that our intention is not to make a causal statement, but simply 

to use this correlation to validate the value of the information contained in our 

accessibility data.  
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We summarize the list of correlates and the corresponding Spearman’s rank 

correlation indices on Table 6.2. Of the 45 neighborhood socio-economic statistics, the 

measures that indicated the strongest correlations with ASneighborhood were Occupied 

housing units, 2010 (rs=0.41), followed by Percentage of Population 16+ years 

employed, 2010-14 (0.39) and Average Family Income, 2008-12 (0.37). Although 

there is no definitive measure of what is considered as a “strong correlation,” these 

indices represent moderate positive correlations according to Tayler’s definition [175]. 

On the other hand, the three characteristics that had strongest negative correlations are: 

Poverty rate (%), 2010-14 (-0.36), Unemployment rate, 2010-14 (-0.36), and 

Percentage of Children in Poverty 2010-14 (-0.35). While no definitive conclusion can 

be drawn from this analysis, the result suggest neighborhood accessibility is correlated 

with the wealth of neighborhoods. 

Property rs Property rs 

Occupied housing units, 2010 0.41 Property crimes, 2011 0.05 
% pop. 16+ yrs. employed, 2010-14 0.39 Number of schools, 2013 0.04 
Avg. family income, 2008-12 0.37 Number of DCPS schools, 2013 0.03 
Population, 2010 0.36 % subprime loans, 2006 -0.02 
% foreign born, 2010-14 0.36 % HHs with a car, 2010-14 -0.02 
% Asian/P.I. non-Hispanic, 2010 0.34 % seniors in poverty, 2010-14 -0.03 
Loans per 1,000 housing units, 2006 0.32 % same house 5 years ago, 2000 -0.05 
% Hispanic, 2010 0.32 Trustee deed sale rate, 2013 -0.12 
% change in avg. family income, 2000 to 2008-12 0.22 SF homes, 2013 -0.12 
% white non-Hispanic, 2010 0.19 Persons receiving food stamps, 2014 -0.16 
% change senior population, 2000 to 2010 0.16 % persons without HS diploma, 2010-14 -0.17 
Median borrower income, 2006 0.16 Violent crimes, 2011 -0.19 
% HHs with a phone, 2010-14 0.15 % low weight births (under 5.5 lbs), 2011 -0.21 
Charter school enrollment, 2013 0.15 % births to teen mothers, 2011 -0.22 
% seniors, 2010 0.14 % black non-Hispanic, 2010 -0.29 
Number of charter schools, 2013 0.11 % children, 2010 -0.30 
% change population, 2000 to 2010 0.10 % change child population, 2000 to 2010 -0.31 
SF homes/condos receiving foreclosure notice, 2013 0.10 Rental vacancy rate (%), 2010-14 -0.32 
Foreclosure notice rate, 2013 0.09 % female-headed families with children, 2010-14 -0.35 
Total school enrollment, 2013 0.08 % children in poverty, 2010-14 -0.35 
Homeownership rate (%), 2010-14 0.08 Unemployment rate (%), 2010-14 -0.36 
DCPS school enrollment, 2013 0.07 Poverty rate (%), 2010-14 -0.36 
Number of sales, 2015 0.06   

Table 6.2. Correlation between neighborhood statistics and Access Score: Neighborhoods. 
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6.7 Discussion and Future Work 

We developed and deployed the system to collect street-level accessibility information, 

conducted the preliminary evaluation of the collected data, and the demonstrated two 

proof-of-concept ALTs. As this is the first work that uses VGI system to collect street-

level accessibility data and demonstrates ALTs that utilize the collected accessibility 

information, it poses areas of improvements and opens up future research opportunities. 

Accuracy of the accessibility feature labels. We showed that the accuracy of 

the accessibility feature labels are 77% when compared to researcher provided ground 

truth. While the most dominant curb ramp labels were 98% accurate, other accessibility 

feature data had accuracy below 81%. Recall was higher than precision for missing 

curb ramps, obstacles, and surface problems, showing that volunteers tend to over label 

these problems. The fact that we can get accurate data for curb ramps with a single 

volunteer suggest that we only need to allocate a single volunteer to audit accessible 

neighborhoods. On the other hand, we should assign multiple volunteers to audit 

inaccessible neighborhoods to collect reliable information about accessibility 

problems. Future work should also investigate how to improve label consistency 

between multiple volunteers. For example, the web site should implement  a better set 

of practice tasks as well as “talk” feature on the web site where novice can learn from 

experienced volunteers through a discussion board [131]. It is also important to 

evaluate if the accuracy or other data qualities of the data collected by volunteers and 

paid crowd workers differ. 
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How can we increase data collection throughput? We need further 

investigation of how to effectively collect volunteer participation. We deployed the 

VGI system and announced it to the small group of people (e.g., undergraduate 

students). We will fully deploy and investigate the effect of advertisement of the system 

to the contribution to the data collection. 

Another intriguing area of research is how to computationally optimize the 

amount of contribution made by volunteers. As we observed, areas that are accessible 

require minimal audits. Allocating less workers to accessible neighborhoods increases 

data collection throughput. The question is, then, “how can we (semi-)automatically 

identify accessible and inaccessible neighborhoods prior to allocating volunteers?” 

Future work should investigate the feasibility of using existing neighborhood statistics 

(e.g., correlates discussed in the accessibility analytics) to predict the accessibility of 

the neighborhoods and use them to prioritize the volunteer allocation.  

Improving Access Score. We developed two neighborhood accessibility 

indicators ASstreet and ASneighborhood. Since this was the first work quantifying 

accessibility of geographical regions using the crowdsourced accessibility data, we 

employed simple methods in which we counted number of accessibility features in a 

given area. There are limitations and future work should address them. First, we only 

took into account of presence and absence of curb ramps, sidewalk obstacles, and 

surface problems. Other features such as presence and absence of sidewalks, terrain 

information, temporary accessibility barriers such as vehicle/pedestrian traffic, and 

Walk Score should be considered as potential features to compute Access Scores. Also, 
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future work should look into methods to incorporate the severity ratings of the 

accessibility features that we collected.  

Future ALTs. We could design and develop more ALTs. For example, 

combining the street-level accessibility data and sidewalk network data enables 

accessibiltiy-aware pedestrian navigation system that can be used by people with 

mobility impairments to plan travel routes. The presented proof-of-concept 

applications could also be improved. For example, neighborhood accessibility analysis 

should be conducted again once we have fully covered the D.C. neighborhoods. 

Because the insights emerged may only apply to D.C., it is also important to extend the 

study to multiple cities. Future work should also investigate how people use these ALTs 

(e.g., would Access Scores impact planners’ decisions on alterations in city 

infrastructures?). 

6.8 Conclusion 

In this chapter, we (i) developed VGI system that lets volunteers to contribute to 

accessibility data collection, (ii) invited volunteers to populated the accessibility data 

repository, (iii) conducted a preliminary evaluation of the collected accessibility data, 

(iv) developed backend system that serves the collected accessibility data to clients 

through three REST APIs, and (v) designed and developed Access Map and 

demonstrated a preliminary accessibility analysis. As a whole, this chapter shows the 

utility of the accessibility data collection methods and the value of the large 

accessibility data repository. 
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Chapter 7 Conclusion 

The primary goal of this dissertation was to design, develop, and evaluate scalable 

methods to remotely and accurately collect street-level accessibility data. In this 

chapter, we first briefly summarize the threads of research in this dissertation before 

describing the main contributions and outlining promising directions for future work. 

 To fulfill the thesis goal, we conducted four threads of research. In Chapter 3, 

the formative interview study revealed how people currently assess accessibility of the 

physical environment. The study also identified 10 key design features and 6 data 

qualities for future designs of assistive location-based technologies. Findings from this 

study, in combination with previous work [21,135,167], motivated us to design 

accessibility data collection methods that use Google Street View (GSV) as a massive 

source of street-level accessibility information. In Chapter 4, we designed, developed, 

and evaluated an online image labeling system where crowd workers can view and 

label accessibility features in GSV images. The study showed that with appropriately 

designed interfaces, minimally trained crowd workers can provide accessibility data 

with an accuracy of 81% and up to 93% with quality control mechanisms. To increase 

the efficiency of the crowdsourced data collection methods, we introduced a semi-

automated data collection system, Tohme, which combines crowdsourcing, computer 

vision, and machine learning in Chapter 5. We showed that we can increase the 

accessibility data collection efficiency by 13% without sacrificing the accuracy. In 

Chapter 6, we developed, deployed, and evaluated a VGI system that collects street-
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level accessibility data. Also, we designed and developed proof-of-concept assistive 

location-based technologies with the collected data. The developed system showed the 

value of the proposed data collection methods. 

7.1 Summary of Contributions 

In this section, we restate the contributions listed in the Introduction and summarize 

how each of these contributions were achieved. 

7.1.1 Characterization of How People with Mobility Impairments Assess 

Accessibility of the Physical Environment 

We conducted a formative interview study (Chapter 3) with 20 people with mobility 

impairments. The findings from the study highlight common accessibility barriers and 

facilitators in the built environment, the impact of those barriers, and methods to 

mitigate or avoid accessibility problems, which reaffirm and extend prior work (e.g., 

[129,135,152,167]). We also uncovered how modern technology is used to assess 

accessibility. For example, online imagery such as GSV and satellite imagery are used 

by people with mobility impairments to visually assess the physical accessibility of 

locations of their interests. 

Through participatory design activities, we identified ten desired features and 

six essential data qualities for ALTs. The top three most desired features were 

providing detailed descriptions, accessibility-aware routing, and top-down map-based 

views of street-level accessibility. Data quality attributes—granularity, relevance, 
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credibility, recency of information, coverage, and location-precision—often related to 

features (e.g., high granularity of data corresponds to the detailed description feature). 

No prior research has enumerated desired features and data qualities of ALTs. Our 

findings have direct implications for the design of ALTs. 

7.1.2 A Novel Crowd-powered Method for Collecting Accessibility Data 

Another contribution of this dissertation is the design, development, and evaluation of 

a novel method for collecting street-level accessibility information by combining 

crowdsourcing and GSV imagery. First, we assessed the viability of using GSV 

imagery as a data source for street-level accessibility information. Six dedicated 

workers, three wheelchair users and three researchers, went through curated set of 

Street View images and identified accessibility problems in the images. We observed 

high concordance between the accessibility problems identified by researchers and 

wheelchair users. This shows that (i) dedicated people can consistently find 

accessibility problems in Street View imagery and (ii) what they consider as 

accessibility problems correspond to what mobility impaired people consider as 

accessibility barriers. 

Second, we designed and developed three types of interfaces to label 

accessibility features in Street View images. The three designs, point-and-click, 

rectangular bounding box, and outline interface, were designed with consideration of 

tradeoff between interaction speed and data granularity. With a study with 153 crowd 
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workers, we quantitatively evaluated speed and accuracy for different types of 

interfaces, which informed the design of image labeling tools in the for data collection. 

Third, we showed that minimally trained crowd workers from Amazon 

Mechanical Turk can accurately find and label accessibility problems. The study with 

402 crowd workers showed that minimally trained workers can provide accessibility 

data with an accuracy of 81% and this figure increased to 93% with quality control 

mechanisms like majority voting. 

We also note that our data collection approach is generalizable to other domains 

and could be used to collect a variety of urban data for public health and city planning 

purposes. For example, we used crowdsourcing to collect bus stop landmark 

information from GSV in our previous work [77,78]. The collected data, such as 

presence of bus stop signs and shelters at a given bus stop, could be used in a navigation 

tool to support people with visually impairments to localize bus stop; people with visual 

impairments could identify what landmarks to look for when they are searching for the 

bus stop. Future work should extend this approach to collect other important data such 

as urban vegetation, city cleanliness, and bicycle signs and lanes.  

7.1.3 A New Approach for Combining Crowdsourcing and Automation 

To overcome the sole reliance on human labors in labeling Street View images, which 

limits scalability, we introduced Tohme, a semi-automated system for remotely 

collecting geo-located curb ramp data using a combination of crowdsourcing, computer 

vision, machine learning, and online map data. Tohme lowers the overall human time 
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cost of finding accessibility problems in GSV while maintaining result quality. The 

main contribution of Tohme is the design, development, and evaluation of the overall 

system. Through a study with 403 crowd workers from Amazon Mechanical Turk, we 

showed that Tohme can detect curb ramps in Street View images much more accurately 

compared to computer vision system alone (F-measure: 84% vs. 67%), but at a 13% 

reduction in human time cost compared to completely manual labeling approach. 

7.1.4 VGI system and Proof-of-Concept ALTs 

In the final part of this dissertation, we (i) developed volunteered geographical 

information (VGI) system for collecting the street-level accessibility data and 

conducted a preliminary deployment and evaluation of the system, and (ii) designed 

and developed two proof-of-concept ALTs to demonstrate the value of the collected 

street-level accessibility information. For our initial evaluation, we invited a small 

number of volunteers and students (who received extra credit in their classes) to use 

our VGI system to find and label street-level accessibility information via word-of-

mouth. At the time of analyzing the data (July 24th, 2016), 154 volunteers (of which 56 

were undergraduate students who received extra credit) contributed and we gathered 

data from 20% of the streets in Washington, D.C. In our preliminary evaluation of the 

collected accessibility data, we showed that the overall data accuracy is 77%. 

To demonstrate the value of the accessibility data collection methods and the 

collected street-level accessibility data, we developed Access Map and conducted 

accessibility analytics. Access Map was designed to support people with mobility 
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impairments to easily explore neighborhood accessibility. The tool could be used when 

mobility impaired users are deciding on where to live. Accessibility analytics revealed 

relationship between neighborhoods’ socio-economic characteristics and accessibility. 

While preliminary, the study provides directions for more rigorous analysis to 

investigate what neighborhood characteristics make neighborhood (in)accessible. 

7.2 Cost Estimation for Large-Scale Data Collection 

The data collection methods introduced in this dissertation enable us to gather street-

level accessibility data at scale. The in situ audit that used to take years to perform 

could be done in days with remote accessibility audits. For example, to collect the 

street-level accessibility information from the 1,200 mi of the roads in Washington, 

D.C., it would only take 152 human-hours (based on the average audit speed of the 

researcher: 7.9 mi per hour). Even we solely rely on paid crowd workers, this would 

only cost $1.1k (with federal minimum wage $7.25 per hour), and this figure will go 

down even further by incorporating help from volunteers and increasing audit 

efficiency by combining automation. This is much faster and cheaper compared to in 

situ auditing; to put it into context, the in situ ADA compliance audits conducted by 

DC DOT by three field auditors in the last three years only covered 15% of the streets 

in DC. 

While this dissertation provides the first step towards large scale street-level 

accessibility data collection, research and practical challenges remain open as future 

work. For example, while we have started collecting street-level accessibility 
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information from Washington, D.C., the total street distance in the city only amounts 

to 0.1% of the entire roads in the U.S. urban areas (1,200 mi of 1.2m mi) [187], which 

is estimated to take 6.3k human-days and will cost $1.1 million if we relied on paid 

crowd sourcing with federal minimum wage. This figure will increase if we employ 

quality control mechanisms such as majority voting used in this dissertation (e.g., the 

cost will be tripled if we use three labeler majority vote). Therefore, increasing the data 

collection efficiency by incorporating more volunteer contributions, integrating 

automation, and increasing data quality with less human work will be the major 

challenges. We discuss future research directions to address this issue in the next 

section. 

7.3 Directions for Future Research 

In this section, we cover the limitations of this dissertation to both better frame and 

scope our contributions as well as to highlight opportunities for future work. We first 

discuss how our crowdsourcing-based accessibility data collection methods could be 

made more efficient. Second, we discuss potential approaches for combining 

crowdsourcing and computer vision to extend the work presented in Chapter 5. Finally, 

we discuss design, development, and evaluation of future assistive location-based 

technologies enabled by our data collection method.  
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7.3.1 Crowdsourcing 

We showed that it is feasible to accurately collect street-level accessibility data from 

GSV. The accuracy of crowdsourced data, however, came with the cost of redundancy 

in quality control methods (i.e., majority voting or manual verification) that are time 

consuming and labor intensive. For the data collection to scale even further, 

crowdsourced data collection and quality control methods need to be more efficient. In 

this section, we discuss potential areas of future work in (i) increasing per-worker 

accuracy to reduce quality control cost, (ii) designing more efficient quality control 

mechanisms, and (iii) designing of more efficient interaction methods for data 

collection.  

Training and Feedback for Crowdsourcing Tasks. For our crowdsourcing 

tasks, novice workers were guided to watch a video tutorial (Chapter 4) or complete 

interactive tutorials (Chapter 5 & 6) that explained the motivation of the task, how to 

interact with the user interfaces, and what constitutes accessibility features. While we 

found that these tutorials were sufficient for our online workers to complete the 

crowdsourcing tasks, suboptimal per-worker accuracy necessitated quality control. 

This is a common problem in crowdsourcing and online citizen science projects 

focused on data collection [131]. To lower the cost while maintaining the accuracy, 

future work should investigate more efficient mechanisms to obtain high-quality 

accessibility data from crowd workers. 

One interesting future work is to investigate how to effectively and efficiently 

train workers and/or give better feedback on their performance to increase per-worker 
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accuracy.  Existing research in crowdsourcing and MOOCs can guide the design of 

training methods. For example, recent work reported that providing means of 

communication among distributed peers have the benefits of increased productivity of 

crowd workers [170], increased quality of work [59,131], and facilitates collaborative 

learning [40]. For example, Zhu et al. showed that reviewing other people’s work is an 

effective way of learning how to conduct a task [217]. Dow et al. showed that crowd 

workers produce better results when they self-assessed and received external 

assessment of one’s work compared to the case where there is no feedback [55]. 

Learning from the above approaches, future work should explore the following: (i) 

would providing novice crowd workers ways to ask experienced workers what 

accessibility features to label increase overall accuracy of the data? (ii) Would letting 

novice crowd workers see what experienced workers labeled (which could be treated 

as a part of verification tasks) improve their understanding about what accessibility 

features to label in GSV? 

We imagine, however, training to label some accessibility features will be 

harder than others. For example, it is hard to make a decision on whether to report a 

missing curb ramp in some cases. Imagine a busy intersection with no signal lights; 

those intersection were designed so pedestrians are not supposed to cross. In fact, the 

ADA Standards for Accessible Design requires “(curb ramps) shall be provided 

wherever an accessible route crosses a curb” [189], leaving where accessible routes 

should be installed ambiguous. This is especially hard when there is no clear indication 

of walkways at intersection (i.e., crosswalks). 
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Efficient Quality Control of the Accessibility Data. Even with careful 

training, however, unavoidable errors in labeling accessibility features (e.g., confusion 

due to difficult labeling tasks) necessitate quality control of the collected data 

[10,92,121]. Nevertheless, prior research in crowdsourcing suggests that the methods 

we employed, majority vote and manual verification, are not cost effective 

[100,149,203] and can be made more efficient. For example, Whitehill et al. [203] and 

Raykars et al. [149] designed and evaluated unsupervised machine learning methods 

to assess workers’ labeling skills from their mutual agreement. Baba and Kashima 

extended this so that the methods not only measures labelers’ skills but also models 

verifiers’ efficacy [10]. While these methods use workers’ responses to specified tasks 

as a sole signal for measuring their efficacy, Rzeszotarski and Kittur showed that it is 

also possible to model worker quality using behavioral information (e.g., scrolling, 

mouse movements, completion time) [161]. 

Using the assessed worker quality, we could either filter out data from less 

reliable workers [121], adaptively assign difficult future tasks to more reliable workers 

[46,100], or adjust the number of workers assigned to a single task [99,202]. These 

techniques would make quality control more cost-effective compared to naively taking 

majority vote of a fixed number of workers or asking a fixed number of workers to 

verify labels. Since the crowd tasks in above literatures are different from ours and 

often use datasets curated for lab experiments, it is important to explore how much 

these quality control mechanisms can increase the efficiency of our data collection 

methods. 
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Efficient Interaction Methods. The labeling and verification interfaces 

presented in this dissertation could be improved; it is important to explore more 

efficient interface designs and interaction methods to reduce the data collection cost. 

For example, we designed quickVerify interface in Chapter 6 that allowed users to 

quickly verify computer vision detections of curb ramps. In our preliminary 

examination of quickVerify with 56 turkers, however, we found that this interface 

actually reduced verification recall from 60.5% (which is by the curb ramp detector 

alone) to 23.4% because correct detections were erroneously rejected by turkers, most 

likely because of lack of enough visual context in the presented images. We should 

therefore explore other interface designs. One potential approach for increasing the 

efficiency of the labeling and verification tasks is to eliminate the cost of panning and 

walking in GSV. For example, we could stitch together multiple Street View images 

that are then played back as a movie. In the early prototype that we created (Figure 

7.1), workers could use this interface to simply label perceived problems or verify 

labeled features as they are quickly “driven” through the street scenes. With this 

approach, we minimize the time they have to interact to “walk” in the Street View 

environment. Unlike the existing video annotation research (e.g., marking players in a 

recording of a basketball game) [197,198], however, videos generated from 360-degree 

Street View images will not necessarily have a “good” camera angle. For example, we 

could set the camera’s heading angle perpendicular to the driving direction to show the 

street sides, but it is not clear what would be the best vertical angle (pitch) to assess the 

sidewalk accessibility. Thus it would be interesting to investigate what constitutes a 
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“good” angle by learning from existing field such as camera position/angle 

optimization in 3D game design and automatically optimize the camera view port 

accordingly [35]. Other research opportunities include the investigation of how fast 

such video could be played to let workers accurately label accessibility features and 

how many videos workers could process in parallel (like [126]). 

 
Figure 7.1. A prototype time-lapse video created from consecutive GSV panoramas. The camera 

automatically moves along the street and faces towards the street side, so the user could assess 

presence/absence of accessibility features such as sidewalks, curb ramps, and obstacles.  
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7.3.2 Computer Vision 

In chapter 5, we initiated research into combining crowdsourcing and automatic curb 

ramp detection. Although some recent research has explored use of computer vision 

for locating accessibility features like cross walks (e.g., Ahmetovic et al. [3]), the space 

is still largely underexplored. Therefore, in addition to evaluating accuracy of state-of-

the art object detection and scene understanding algorithms (e.g., [165,166]) for 

accessibility feature detection, future work should push forward the state-of-the-art 

computer vision research by investigating (i) how to combine computer vision and 

crowdsourcing to accurately and efficiently find accessibility features and (ii) how to 

assess fine grained information about the accessibility. 

Combining of Crowdsourcing and Computer Vision. The key to effectively 

integrate computer vision and crowdsourcing is to understand the performance of 

computer vision algorithms and adaptively use crowd work [158,215]. In chapter 5, we 

described a method to use an ML-based supervised workflow controller to assess the 

difficulty of each object detection task, which allowed us to adaptively allocate work 

to different crowd workflows to reduce human cost. Similar approaches have been 

taken in recent computer vision. For example, Zhang et al. used a supervised machine 

learning algorithms to detect computer vision failure in semantic image segmentation 

and vanishing point detection [215]. Russakovsky et al. introduced a method to 

combine a variety of crowdsourcing tasks with object detection algorithms using 

Markov decision process that automatically balances human cost and object detection 

accuracy [158]. 
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The workflow controllers in these literatures (including ours), however, 

required data preprocessing and/or manually defined hyper parameters to assess 

expected computer vision performance. For example, we defined the criteria for the 

computer vision failure (i.e., presence of false negatives), and used a set of 

preprocessed data to let the controller detect failures and decide workflow (manual 

labeling vs. CV + verification). We believe these manual processes could be integrated 

into automated learning using reinforcement learning. For example, instead of 

explicitly defining what the computer vision failure is, we could provide overall 

accuracy and cost as input to let the workflow controller learn what constitute computer 

vision failures and what features to use to assess those failures. Automating the manual 

processes will increase the generalizability of the techniques and could make 

integration of computer vision algorithms and crowdsourcing components for systems 

designers. 

Automatically Retrieving Fine-Grained Accessibility Information. This 

dissertation showed that crowdsourcing and computer vision can be used to identify 

the presence curb ramps in a street-level environment. However, we did not investigate 

if these technologies can accurately assess more fine grained properties of other 

accessibility features. For example, it is often difficult to make precise quantitative 

judgments about the obstacle size in an image, or assess whether the incline of a curb 

ramp is too steep. Future work should investigate the use of high-precision satellite 

imagery and 3D point cloud data collected via LiDAR data to assess fine grained details 

of the accessibility features. For example, if a user labels a pole as an obstacle, we can 
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measure the width of the obstructed path if we have precise 3D point cloud data. 

Alternatively, because each street view scene often has multiple picture angles, CV-

based mensuration techniques like structure-from-motion. 

Modeling Indoor Accessibility. We focused on finding outdoor accessibility 

features from GSV. Equally important is assessing indoor accessibility of points-of-

interest for people with mobility impairments. Often times, building owners provide 

limited, if any, information about the accessibility of their buildings. Crowd-powered 

projects like Wheelmap and Axsmap are making progress in providing more detailed 

accessibility information, but the information has low location precision. That is, the 

applications tell the users whether the building has accessible entrance or not, but it 

does not tell which entrances are accessible if there are multiple of them. One future 

research direction include feasibility assessment of combining our data collection 

approach with indoor Street View imagery (Figure 7.2); we should investigate what 

useful indoor accessibility information could be semi-automatically extracted by crowd 

workers and computer vision algorithms (e.g., can we semi-automatically detect 

locations of entrances and table heights?). Another potential avenue of future research 

is to make the indoor accessibility data more confirmable for the users. For example, 

we expect recent advancement in automatic 2D floorplan or 3D indoor model 

generation [25,36,90,115,208] could be useful for people with mobility impairments; 

using the generated 2D/3D indoor maps, mobility impaired people could easily assess 

which parts of the building are accessible and inaccessible.  
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Detecting Changes in Accessibility over Time. Changes in streetscape could 

affect the accessibility of street-level environment. Dynamic characteristics of urban 

environment such as pedestrian density, construction, and snow accumulation affect 

the accessibility of the sidewalks [129]. Long-term changes like construction of 

sidewalks and curb ramp installment can often improve sidewalk accessibility for 

mobility impaired people. Whether the changes include accessibility improvement or 

degradation, the accessibility information needs to be kept updated so that we can 

provide accurate information to the users. Therefore, an important future work would 

be to design efficient methods to track these changes. An interesting area of future 

research includes the development of methods that incorporate recent advancement in 

computer vision research in detecting environmental changes over time (e.g., 

[8,169,183]). Using frequently updated geo-localized images and 3D models (which 

could be collected through LiDAR or generated from structure-from-motion) of the 

built environment, we could use background-subtraction to automatically detect 

 

Figure 7.2. Indoor Street View imagery of public places (e.g., restaurants) contains potentially useful 

accessibility information such as presence and location of accessible entrances and height of tables. See 

https://goo.gl/maps/4LZ3GRHvdEK2 for the original Street View image. 

 

https://goo.gl/maps/4LZ3GRHvdEK2
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changes in accessibility features in the street-level environment. As we believe the 

completely automated methods would not provide sufficiently accurate change 

detection, the key challenge here would be, again, to design methods to effectively 

combine inaccurate but efficient computer vision algorithms with accurate but more 

costly human work so that we can collect data with low cost while maintaining high 

accuracy.  

7.3.3 Design, Development and Evaluation of Applications 

Our accessibility data collection methods enable a variety of new assistive location-

based technologies for people with mobility impairments. This opens up rich research 

opportunities for designing technologies for people with mobility impairments and 

beyond.  

 Design and Development of Assistive Location-based Technologies. It is 

important for us to extend our formative study described in Chapter 3 that explored 

what location-based technologies could be useful for people with mobility 

impairments. Following the design approach in HCI, we should iteratively design and 

 

Figure 7.3. Three form factors of accessibility-aware navigation tool. (a) A smart phone based navigation 

system similar to existing applications like Google Maps and Apple Maps. (b&c) Google Glass and smart 

watch-based navigation applications; we expect these form factors are easier for manual wheelchair users to 

use while they are on-the-go and their hands are occupied. 
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develop mid- to high-fidelity technologies and conduct participatory design with 

potential users with mobility impairments to refine the applications. During this design 

process, it is crucial to investigate preferred accessible form factors of the technologies. 

For instance, for an accessibility-aware navigation tool—technology desired by the 

majority of our interview study participants—we expect wheelchair users to prefer 

Google Glass- or smart watch-based interfaces over a traditional smart phone-based 

design, because the former designs would be useable even the wheelchair users are on-

the-go and their hands are occupied by rolling the chair—see lo-fidelity system 

prototypes on Figure 7.3. 

 Data Quality Requirement Analysis. In evaluating each of the future 

technologies, it is important to assess the required levels of accuracy and data 

granularity, as well as investigate what the budget needed to achieve those levels. For 

example, while neighborhood-level visualization such as Access Score visualization 

described in Chapter 6 does not require high location precision (the application needs 

to know the presence of accessibility problems in a given area larger than localization 

errors introduced by GPS inaccuracy), accessibility-aware navigation systems may 

need higher location precision. It is also important to investigate the necessary data 

accuracy for each application; while we achieved high-accuracy (e.g., 93% for image 

level accuracy), it is unclear if this level of accuracy is enough for the applications to 

be used by people with mobility impairments. Because more accurate and precise data 

would require careful quality control, the cost of data collection would increase. 
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Applications in Urban Planning and Public Health. The street-level 

accessibility information that is collected with our methods not only support people 

with mobility impairments, but could also be used for urban design and planning for 

policy makers, public health researchers, and urban planners [15,157]. Studies in the 

above fields have found associations between specific neighborhood characteristics 

(e.g., cleanliness, perceived safety) and cardiovascular disease [41], self-rated health 

[2], walking and other forms of physical activity [86], and obesity [17]. However, the 

effect of street-level accessibility to these health, social, and psychological factors has 

not been studied at a large scale, presumably because it has not been possible without 

comprehensive data about the accessibility of the built environment. Therefore, an 

important piece of research would be to investigate if the street-level accessibility data 

could be used as a source of good indicators for above factors. And if so, the work 

should also explore how we can empower public health researchers and practitioners 

like urban designers to use the data through technologies. 

7.3 Final Remarks 

We have provided insights into how to scalably collect street-level accessibility data 

using crowdsourcing and automated methods from GSV through development and 

evaluation of crowd-powered systems. We believe this dissertation serves as the first 

step towards making technologies that enable us to characterize accessibility of the 

physical environment of the world. 
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Appendix A 

Formative interview study materials 

Includes: 

 Background survey 

 Semi-structured interview script 

 Participatory design session scenarios 

 Participatory design session templates 

 Design probes 
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Background Survey 

1. Your name 

 

2. Age 

 

3. Gender 

 

4. Please describe your mobility impairment and the way that it affects your 

movement. If you have a specific diagnosis, please list that as well (e.g., 

spinal cord injury, level c5) 

 

 

 

5. How long have you had your mobility impairment (e.g., 5 years)? 

 

 

 

6. What mobility aids do you use?  

[Manual wheelchair / Electric wheelchair / Scooter / Cane / Walker / Other] 

 

 

 

7. What is your main means of transportation for everyday tasks (e.g., to grocery 

store, to cafe, to a park).  

[Private vehicle / Paratransit / Public transportation (e.g., Metrobus) / 

Wheelchair or walk / Other] 

 

 

 

8. How often do you leave your home to take trips in your city (regardless of 

transportation mode)?  

[Never / Rarely (once a week) / Sometimes (a few times a week) / Often 

(nearly everyday) / Everyday] 

 

 

 

9. Do you have any other impairments? (e.g., vision impairment)  

[None / Vision impairment / Hearing impairment / Upper body motor 

impairment / Other] 
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10. Do you use a computer? [Yes / No] 

 

11. If so, how often do you use a computer every week on average? 

[Rarely (once a week or less) / Sometimes (a few times a week) / Often 

(nearly everyday) / Everyday] 

 

12. Do you use any assistive technologies to use a computer? For example, a 

trackball mouse? Please describe 

 

 

 

 

13. Do you own a mobile phone? [Yes / No] 

 

14. Is your mobile phone a smartphone? [Yes / No] 

 

15. Do you use any assistive technologies to use a mobile phone? (e.g., a mouth 

stick or Apple VoiceOver, etc.). Please describe. 

 

 

 

 

16. How did you learn about this interview study? 

[From my family and/or friends / Email from an accessibility organization / 

Email from the research team / Email from the University of Maryland (e.g., 

FYI UMD) / Other] 
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Semi-structured Interview Script 

Preparation 

 Interview study script 

 Design activity instruction for the participant 

 Pen and paper 

 Consent form 

 Payment form 

Introduction 

Hello, I am [YOUR NAME]. First, I would like to thank you for participating in our 

study.  

Our team is designing new methods and tools to inform people about inaccessible areas 

of a city. For example, places could be inaccessible due to lack of sidewalks, absence 

of curb ramps at intersections, or inaccessible building entrance.  

The goal of this study is to better understand how you currently cope with the 

accessibility problems and what technologies could improve the way you plan a trip 

and navigate the city.  

1. The first stage is an interview study. I will ask how you get around the city. For 

example, we want to know if you ever look up accessibility information about 

the built environment, and if you do, what methods you use.  

2. The second stage is a design activity. We would like you to brainstorm and 

explore the design of potential map applications that could improve the way 

you navigate a city.  

The brainstorming activity will involve sketching potential map applications that could 

help you navigate unfamiliar places. If you are not comfortable sketching using a pen 

and paper, you could describe the potential map applications verbally so we could 
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sketch on your behalf. We have also brainstormed and prepared some early designs of 

potential map tools. I will also ask for your feedback about them.  

The whole study session should take about 60 minutes. Your data will be kept 

anonymous. You have the right to stop participating in a study, for any reason, and at 

any time. We will be audio/video recording. For the video recording, your face will not 

be captured and we do not intend to take identifiable images of you. Before we begin 

the interview, we need to complete a consent form and basic background survey. 

Is there any question? 

[Start recording once the participant signed the consent form.] 
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Part 1: Methods for Planning a Trip and Navigating through a City 

I would like to ask you how you currently learn about accessibility of unfamiliar places 

and neighborhoods when you travel. For example, I want to know if you look up 

whether sidewalks exist, curb ramps are installed at intersections, sidewalks are in good 

conditions and not obstructed, or there are any accessible entrance at a building you 

visit. 

1. Tell me how you get around the city. [Ask how they go to grocery stores, how 

often, and with who, if the interviewee is stuck.] 

 

2. What would you do if you don’t know the neighborhoods? Let’s say you 

changed a dentist and you are visiting a new place. 

o How do you find a new dentist (or any other places to go) in the first 

place? 

o When you are in an unfamiliar area, what would be your strategy to 

navigate from a point A to your destination? For example, do you use 

paper maps or technologies like Google Maps’ navigation to find a 

route? 

 

3. What are the anxieties? What are the challenges for traveling to unfamiliar 

places? 

 

4. When you visit an unfamiliar place, do you check if the place is accessible? 

o If yes, 

 How?  [Ask the following questions if the interviewee does not 

describe them.] 

 Do you look up accessibility of a building you visit, for 

example, by calling the place you are visiting? 

 Do you use any existing technologies like mobile app to 

find accessibility information of the place you visit? 

 What’s the preferred method to look up accessibility 

information? 

o If no, 
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 Why not? 

 

5. Do you factor in accessibility of the neighborhoods’ built-environment like 

sidewalks and streets when you are deciding a place to visit?  

o How? Do you use Google Street View? 

o Or why not? 

 

6. Have you ever had any problem because you did not check the accessibility of 

a place or a route? Could you explain? 
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Part 2: Brainstorming & Design Session  

To explore what tools we could design to help people learn about accessibility of built 

environment like sidewalks and streets, I would like you to brainstorm ideal map 

technologies that we could develop.  

1. I will present three scenarios. In each scenario, you will be asked to work on a 

task related to planning a trip.  

2. I will ask you to brainstorm ideas for potential technologies that could support 

you to complete the task in the scenario. Note that the potential tools do not 

have to exist today; I would like to know what tools could help you rather 

than what is possible with today’s technology. 

3. I want you to use a pen and paper to sketch the ideas for about 5-7 minutes. 

While sketching, I want you to speak aloud so we know what you are 

thinking. If you are not comfortable sketching, please describe your ideas 

verbally so I can sketch on your behalf. 

Is there any question? 

This should be a fun activity! I want us to design the future of accessibility-aware map 

tools together! 
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Part 2.1: Exploration of City Accessibility 

Let’s think about how you could explore the accessibility of the city. The tool allows 

you to quickly browse how accessible city areas are. Please sketch design of the tool 

that can support you in the following scenario: 

Scenario 

You are planning to rent a room in an unfamiliar city that you will move to a few 

months. Imagine that there is a website that provides accessibility information about 

the city. What should that website look like?  

As a start, I’ve provided a map-based interface below with a few apartments indicated 

with black icons. Please sketch your ideas below. To help with this task, think about 

the information you would like to know in order to make a decision about where to 

live. Imagine that the tool has access to any information that you want! 
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Part 2.2: Accessibility-aware Location Search 

Let’s design location search tool; the next generation of Yelp that allows you to search 

businesses with all kinds of accessibility information (e.g., accessibility of building 

entrance, access to nearby public transportation). Please design a tool that can support 

you in the following scenario:  

Scenario 

Your friends are visiting you and you want to take them to an Italian restaurant in 

Washington, DC. You want to find a popular restaurant, and you also want to make 

sure the business and its surrounding areas are accessible for you. On a web browser, 

you choose to search for “Italian restaurants in Washington, DC that are accessible.” 
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Part 2.3: Accessibility-aware Navigation 

Now let’s think about routes, an awesome tool or new features in Google Maps that 

provides information about accessible routes. Imagine the following scenario: 

Scenario 

You came to an unfamiliar city for your holiday. You remember there is a natural 

science museum in the city and decide to visit there. You open a navigation tool on your 

computer to find accessible routes from the hotel you are staying to the museum. 

 

  



 

 

211 

 

Part 3: Design Probe 

This is the last part of the study. First, I want your feedback on prototype tools that we 

have designed. Then, we will ask a few questions about the methods we use to collect 

accessibility information.  

Part 3.1: Exploration of City Accessibility 

Design Probe 

Please remember the scenario where you were planning to rent a room in an unfamiliar 

city. [Show the sketches of map applications for accessibility exploration.] 

 Are tools that show accessible and inaccessible areas of a city useful in this 

scenario? 

 What level of detail do you expect from the application? Do you want to know 

just an abstract level of street accessibility, or do you want to know where 

exist what types of accessibility barriers? 
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Part 3.2: Accessibility-aware Location Search 

Design Probe  

Please remember the scenario where you were asked to find an accessible Italian 

restaurant. [Show the sketches of potential map applications and ask following 

questions.] 

 Are tools that allow you to search and sort businesses based on accessibility 

level useful? 

 What level of detail do you expect from the application? Do you want the 

indoor accessibility and outdoor accessibility to be quantified separately? 
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Part 3.3: Accessibility-aware Navigation 

Design Probe  

Please remember the scenario where you were asked to find an accessible route to a 

museum. [Show the sketches of potential map applications and ask following 

questions.] 

 Are tools that allow you to search accessible routes useful? 

 Would both indoor and outdoor navigation be useful? 
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End of the Study 

 Thank the participant for participating. 

 Have participant complete payment form. 

 Pay participants. 

 Ask participants if they will be willing to participate in the future research. 

  



 

 

215 

 

Participatory design session scenarios 

Part 2: Brainstorming & Design Session  

To explore what tools we could design to help people learn about accessibility of built 

environment like sidewalks and streets, I would like you to brainstorm ideal map 

technologies that we could develop.  

I will present three scenarios. In each scenario, you will be asked to work on a task 

related to planning a trip.  

I will ask you to brainstorm ideas for potential technologies that could support you to 

complete the task in the scenario. Note that the potential tools do not have to exist 

today; I would like to know what tools could help you rather than what is possible with 

today’s technology. 

I want you to use a pen and paper to sketch the ideas for about 5-7 minutes. While 

sketching, I want you to speak aloud so we know what you are thinking. If you are not 

comfortable sketching, please describe your ideas verbally so I can sketch on your 

behalf. 

Is there any question? 

This should be a fun activity! I want us to design the future of accessibility-aware map 

tools together! 
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Part 2.1: Exploration of City Accessibility 

Let’s think about how you could explore the accessibility of the city. The tool allows 

you to quickly browse how accessible city areas are. Please sketch design of the tool 

that can support you in the following scenario: 

Scenario 

You are planning to rent a room in an unfamiliar city that you will move to in a few 

months. Imagine that there is a website that provides accessibility information about 

the city. What should that website look like?  
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Part 2.2: Accessibility-aware Location Search 

Let’s design a location search tool; the next generation of Yelp that allows you to 

search businesses with all kinds of accessibility information. Please design a tool that 

can support you in the following scenario:  

Scenario 

Your friends are visiting you and you want to take them to an Italian restaurant in 

Washington, DC. You want to find a popular restaurant, and you also want to make 

sure the business and its surrounding areas are accessible for you. What should the 

application look like? 
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Part 2.3: Accessibility-aware Navigation 

Now let’s think about routes, an awesome tool or new features in Google Maps that 

provides information about accessible routes. Imagine the following scenario: 

Scenario 

You came to an unfamiliar city for your holiday. You remember there is a natural 

science museum in the city and decide to visit there. You open a navigation tool on your 

computer to find accessible routes from the hotel you are staying to the museum. 

What should the application look like? 
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Participatory Design Session Template 
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Design Probes 
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