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Figure 1: SoundWatch uses a deep-CNN based sound classifier to classify and provide feedback about 

environmental sounds on a smartwatch in real-time. Images show different use cases of the app and one of the 

four architectures we built (watch+phone). 

ABSTRACT  

Smartwatches have the potential to provide glanceable, always-available sound feedback to people who are 

deaf or hard of hearing. In this paper, we present a performance evaluation of four low-resource deep learning 

sound classification models: MobileNet, Inception, ResNet-lite, and VGG-lite across four device 

architectures: watch-only, watch+phone, watch+phone+cloud, and watch+cloud. While direct comparison 

with prior work is challenging, our results show that the best model, VGG-lite, performed similar to the state 

of the art for non-portable devices with an average accuracy of 81.2% (SD=5.8%) across 20 sound classes 

and 97.6% (SD=1.7%) across the three highest-priority sounds. For device architectures, we found that the 

watch+phone architecture provided the best balance between CPU, memory, network usage, and 

classification latency. Based on these experimental results, we built and conducted a qualitative lab 

evaluation of a smartwatch-based sound awareness app, called SoundWatch (Figure 1), with eight DHH 

participants. Qualitative findings show support for our sound awareness app but also uncover issues with 

misclassifications, latency, and privacy concerns. We close by offering design considerations for future 

wearable sound awareness technology.  
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1 Introduction 
Smartwatches have the potential to provide glanceable, always-available sound feedback to people who are 

deaf or hard of hearing (DHH) in multiple contexts [4,8,31]. A recent survey with 201 DHH participants [4] 

showed that, compared to smartphones and head-mounted displays, a smartwatch is the most preferred device 

for non-speech sound awareness. Reasons included improved privacy, social acceptability, and integrated 

support for both visual and haptic feedback. Most prior work in wearable sound awareness, however, has 

focused on smartphones [3,32,40], head-mounted displays [9,13,18], and custom wearable devices [22,34] 

that provide limited information (e.g., loudness) through a single modality (e.g., vision). A few Wizard-of-

Oz studies have explored using visual and vibrational feedback on smartwatches for sound awareness 

[8,31,32]; however, the evaluations of the prototypes were preliminary. One exception includes Goodman et 

al. [8], who conducted a Wizard-of-Oz evaluation of smartwatch-based designs, gathering user reactions in 

different audio contexts (a student lounge, a bus stop, and a cafe). However, this work was intentionally 

formative with no functioning implementations. 

Furthermore, recent deep-learning research has investigated multi-class sound classification models, 

including for DHH users [21,40]. For example, Jain et al. [21] used deep convolutional neural networks to 

classify sounds in the homes of DHH users, achieving an overall accuracy of 85.9%. While accurate, these 

cloud or laptop-based models utilize a high memory and processing power and are unsuitable for low-

resource portable devices. 

Building on the above research, in this paper we present two smartwatch-based studies. First, we 

quantitatively examine four state-of-the-art low-resource deep learning models for sound classifications: 

MobileNet [15], Inception [41], ResNet-lite [42], and a quantized version of HomeSound [21], which we call 

VGG-lite, across four device architectures: watch-only, watch+phone, watch+phone+cloud, and 

watch+cloud. These approaches were intentionally selected to examine tradeoffs in computational and 

network requirements, power efficiency, data privacy, and latency. While direct comparison to prior work is 

challenging, our experiments show that the best classification model (VGG-lite) performed similarly to the 

state of the art for non-portable devices while requiring substantially less memory (~1/3rd). We also observed 

a strict accuracy-latency trade-off: the most accurate model was also the slowest (avg. accuracy=81.2%, 

SD=5.8%; avg. latency=3397ms, SD=42ms). Finally, we found that the two phone-based architectures 

(watch+phone and watch+phone+cloud) outperformed the watch-centric designs (watch-only, 

watch+cloud) in terms of CPU, memory, battery usage, and end-to-end latency. 

To complement these quantitative experiments, we built and conducted a qualitative lab evaluation of a 

smartwatch-based sound awareness app, called SoundWatch (Figure 1), with eight DHH participants. 

SoundWatch incorporates the best performing classification model from our system experiments (VGG-lite) 

and, for the purposes of evaluation, can be switched between all four device architectures. During the 90-min 

study session, participants used our prototype in three locations on a university campus (a home-like lounge, 

an office, and outdoors) and took part in a semi-structured interview about their experiences, their views 

regarding accuracy-latency tradeoffs and privacy, and ideas and concerns for future wearable sound 

awareness technology. We found that all participants generally appreciated SoundWatch across all three 

contexts, reaffirming past sound awareness work [4,8]. However, misclassifications were concerning, 

especially outdoors due to background noise. For accuracy-latency tradeoffs, participants wanted minimum 

delay for urgent sounds (e.g., car honk, fire alarms)—to take any required action—but maximum accuracy 

for non-urgent sounds (e.g., speech, background noise) to not be unnecessarily disturbed. Finally, participants 

selected watch+phone as the most preferred architecture because of privacy concerns with the cloud, 

versatility (no Internet connection required), and speed (watch+phone classified faster than watch only). 

In summary, our work contributes: (1) a comparison of four deep learning models for sound classification on 

mobile devices, including accuracy-latency results, (2) a new smartwatch-based sound identification system, 

called SoundWatch, with support for four different device architectures, and (3) qualitative insights from in-
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situ evaluation with eight DHH users, including reactions to our designs, architecture preferences, and ideas 

for future implementations. 

2 Related Work 
We contextualize our work within sound awareness needs and tools of DHH people as well as prior sound 

classification research. 

2.1 Sound Awareness Needs  

Prior formative studies have investigated the sounds, audio characteristics, and feedback modalities desired 

by DHH users. In terms of sounds of interest, two large-scale surveys by Findlater et al. [4] and Bragg et al. 

[3] with 201 and 87 participants respectively showed that DHH people prefer urgent and safety-related sounds 

(e.g., alarms, sirens) followed by appliance alerts (e.g., microwave beep, kettle whistle) and sounds about the 

presence of people (e.g., door knock, name calls). These preferences may be modulated by cultural factors: 

participants who prefer oral communication were more interested in some sounds (e.g., phone ring, 

conversations) than those who prefer sign language [3,4]. 

In addition to desired sounds, prior work has shown DHH users desire certain characteristics of sound (e.g., 

identity, location, time of occurrence) more than others (e.g., loudness, duration, pitch) [8,27]. However, the 

utility of these characteristics may vary by physical location. For example, at home, awareness of a sound’s 

identity and location may be sufficient [20,21], but directional indicators may be more important when mobile 

[32]. Besides location, Findlater et al. [4] showed that social context (e.g., friends vs. strangers) could 

influence the use of the sound awareness tool and thus customization (e.g., using sound filtering) is essential. 

Informed by this work, Goodman et al. [8] explored using smartwatch designs in different locations (e.g., 

bus stop, coffee shop), including the sound filtering options (e.g., using identity, direction, or loudness). 

In terms of feedback modalities, several studies recommend combining visual and vibrational information 

for sound awareness [8,31,32]; a smartwatch can provide both. To help users consume sound feedback 

information, past work recommends using vibration to notify about sound occurrence and a visual display 

for showing additional information [3,20]—which we also explore—although a recent study also showed 

promise in using vibration patterns (tactons) to convey richer feedback (e.g., direction) [8]. In the same study, 

participants valued the role of smartwatch as a glanceable, private, and portable display that can be used in 

multiple contexts. 

We build on the above studies by examining the use of working smartwatch prototypes in three contexts, 

revealing qualitative reactions, system design suggestions, and location-based customization options. 

2.2 Sound Awareness Technologies 

Early research in sound awareness studied vibrotactile wrist-worn solutions, mainly to aid speech therapy by 

conveying voice tone [45] or frequency [44]; that work is complementary to our non-speech sound awareness. 

Researchers have also tried methods to completely substitute hearing with tactile sensation using more larger, 

more obtrusive form factors such as waist-mounted [36] or neck-worn [7], but this has shown little promise.  

More recent work has examined stationary displays for sound awareness [14,27,28,43], such as on desktops 

[14,27]. Though useful for their specific applications, these solutions are not conducive to multiple contexts. 

Towards portable solutions, Bragg et al. [6] and Sicong et al. [31] used smartphones to recognize and display 

sound identity (e.g., phone ringing, sirens). However, they evaluated their app in a single context (office [3], 

a deaf school [40]) and focused on user interface rather than system performance—both are critical to user 

experience, especially given the constraints of low-resource devices [11,23].  

Besides smartphones, wearable solutions such as head-mounted displays [9,13,18] and wrist-worn devices 

[22,34] have been examined. For example, Gorman [9] and Kaneko et al. [22] displayed the direction of 

sound sources using a head-mounted display and a custom wrist-worn device, respectively. We explore 
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smartwatches to provide sound identity, the most desired sound property by DHH users [3,19,27]. While not 

specifically focused on smartwatches, Jain et al. [21] examined smartwatches as complementary alerting 

devices to smarthome displays deployed that sensed and processed sound information locally and 

broadcasted it to the smartwatches; we examine a self-contained smartwatch solution for multiple contexts. 

In summary, while prior work has explored sound awareness tools for DHH people, including on portable 

devices [10,18,22,34], this work has not yet built and evaluated a working smartwatch-based system—a gap 

which we address in our work. 

2.3 Sound Classification Research 

Early efforts in classifying sounds relied on hand-crafted features such as zero-crossing rate, frame power, 

and pitch [33,37,38]. Though they performed reasonably well on clean sound files with a small number of 

classes, these features fail to account for acoustic variations in the field (e.g., background noise) [26]. More 

recently, machine learning based classification has shown promise for specific field tasks such as gunshot 

detection [5] or intruder alert systems [2]. Specifically for DHH users, Bragg et al. [3] explored a preliminary 

GMM-based sound detection algorithm to classify two sounds (alarm clock, door knock) in an office setting. 

For more broad use cases, deep learning-based solutions have been investigated [21,40]. For example, Sicong 

et al. [40] explored a lightweight CNN-based architecture on smartphones to classify nine sounds preferred 

by DHH users (e.g., fire alarm, doorbell) in a school setting. Jain et al. [21] used deep convolutional neural 

networks running on a tablet to classify sounds in the homes of DHH users, achieving an overall accuracy of 

85.9%. We closely follow the latter approach in our work but use embedded devices (phone, watch) and 

perform evaluations in varying contexts (home, work, outdoors). We also train and evaluate four low-

resource deep learning models and possible watch-based architectures, as well as collect user preferences.  

3 The SoundWatch System  
SoundWatch is an Android-based app designed for commercially available smartwatches to provide 

glanceable, always-available, and private sound feedback in multiple contexts. Building from previous work 

[8,21], SoundWatch informs users about three key sound properties: sound identity, loudness, and time of 

occurrence through customizable sound alerts using visual and vibrational feedback (Figures 1 and 3). We 

use a deep learning-based sound classification engine (running on either the watch or on the paired phone or 

cloud) to continually sense and process sound events in real-time. Below, we describe our sound classification 

engine, our privacy-preserving sound sensing pipeline, system architectures, and implementation. The 

SoundWatch system is open sourced on GitHub: https://github.com/makeabilitylab/SoundWatch. 

3.1 Sound Classification Engine 

To create a robust, real-time sound classification engine, we followed an approach similar to HomeSound 

[21], which uses transfer learning to adapt a deep CNN-based image classification model (VGG) for sound 

classification. We downloaded four recently released (in Jan 2020 [46]) TensorFlow-based image-

classification models for small devices: MobileNet, 3.4MB [15], Inception, 41MB [41], ResNet-lite, 

178.3MB [42], and a quantized version of model used in HomeSound [21], which we call VGG-lite, 

281.8MB. Since the size of four models differ considerably, we hypothesized that they would offer different 

tradeoffs in terms of accuracy and latency. 

To perform transfer learning, similar to Jain et al. [21], we used a large corpus of sound effect libraries—

each of which provide a collection of high-quality, pre-labeled sounds. We downloaded 20 common sounds 

preferred by DHH people (e.g., dog bark, door knock, speech) [3,20] from six libraries—BBC [47], 

Freesound [6], Network Sound [48], UPC [49], TUT [30] and TAU [1]. All sound clips were converted to a 

single format (16KHz, 16-bit, mono) and silences greater than one second were removed, which resulted in 

35.6 hours of recordings. We then divided the sounds into three categories based on prior work [3,27]: high 

priority (containing the 3 most desired sounds by DHH people), medium-priority sounds (10 sounds), and all 

sounds (20 sounds) (see Table 1). We used the method in Hershey et al. [12] to compute the log mel-

https://github.com/makeabilitylab/SoundWatch
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spectrogram features in each category, which were then fed to the four models, generating three models of 

each architecture (12 in total). 

Table 1: The sounds and categories used to train our sound classification models 

All sounds  
(N=20) 

Fire/smoke alarm, Alarm clock, Door knock, Doorbell, Door-in-use, Microwave, 
Washer/dryer, Phone ringing, Speech, Laughing, Dog bark, Cat meow, Baby crying, 
Vehicle running, Car horn, Siren, Bird chirp, Water running, Hammering, Drilling 

High priority  
(N=3) 

Fire/smoke alarm, Alarm clock, Door knock 

Medium priority 
(N=10) 

Fire/smoke alarm, Alarm clock, Door knock, Doorbell, Microwave, Washer/dryer, 
Phone ringing, Car horn, Siren, Water running 

Home context 
(N=11) 

Fire/smoke alarm, Alarm clock, Door knock, Doorbell, Door-in-use, Microwave, 
Washer/dryer, Speech, Dog bark, Cat meow, Baby crying 

Office context 
(N=6) 

Fire/smoke alarm, Door knock, Door-in-use, Phone ringing, Speech, Laughing 

Outdoor context 
(N=9) 

Dog bark, Cat meow, Vehicle running, Car horn, Siren, Bird chirp, Water running, 
Hammering, Drilling 

3.2 Sound Sensing Pipeline 

For always-listening apps, privacy is a key concern. While SoundWatch relies on a live microphone, we 

designed our sensing pipeline to protect user privacy. The system processes the sound locally on the watch 

or phone and, in the case of the cloud-based architectures, only uploads non-reconstructable mel-spectrogram 

features. While the uploaded features can be used to identify the kind of activity a user is engaged in (e.g., 

speaking, cooking), conversational information is not retrievable.  For signal processing, we take a sliding 

window approach: the watch samples the microphone at 16KHz and segments data into 1-second buffers 

(16,000 samples), which are fed to the sound classification engine. To extract loudness, we compute the 

average amplitude in the window. All sounds at or above 50% confidence and 45dB loudness are notified to 

the user, the others are ignored.  

3.3 System Architectures 

We implemented four device architectures for SoundWatch: watch-only, watch+phone, watch+cloud, and 

watch+phone+cloud (Figure 2). Because the sound classification engine (computing features and predicting 

sound) is resource intensive, the latter three architectures use a more powerful device (phone or cloud) for 

classification. For only the cloud-based architectures, to protect user privacy, non-reconstructable sound 

features are computed before being sent to the cloud—that is, on the watch (watch+cloud) or on the phone 

(watch+phone+cloud). We use Bluetooth Low Energy (BLE) for watch-phone communication and WiFi or 

a cellular network for watch-cloud or phone-cloud communication.  
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Figure 2: A diagram of the four SoundWatch architectures and a breakdown of their sensing pipelines. Block 

widths are for illustration only and are not indicative of actual computation time. 

3.4 User Interface 

To increase glanceability, we designed the SoundWatch app as a push notification; when a classified sound 

event occurs, the watch displays a notification along with a vibration alert. The display includes sound 

identity, classification confidence, loudness, and time of occurrence (Figure 3). Importantly, each user can 

mute an alerted sound by clicking on the “10-min” mute button, or by clicking on the “open” button and 

selecting from a scroll list of mute options (1 min, 5 min, 10 min, 1 hour, 1 day, or forever). Additionally, 

the user can select which sounds to receive alerts for by using the paired phone app, which displays a 

customization menu (Figure 3d). While future versions should run as an always-available service in Android, 

currently the app must be explicitly opened on the watch to run (Figure 3a). Once the app is opened, it 

continuously runs in the background. 

 

Figure 3: The SoundWatch user interface showing the opening screen with a button to begin recording the audio 

for classification (a), the notification screen with a “10-min” mute button (b), and the main app screen with 

more mute options (c). (d) shows a partial view of the paired phone app to customize the list of enabled sounds. 

4 System Evaluation 
To assess the performance of our SoundWatch system, we perform two sets of evaluations: (1) a comparison 

of the four state-of-the-art sound classification models for embedded devices and (2) a comparison of the 

four architectures: watch-only, watch+phone, watch+cloud, and watch+phone+cloud. For all experiments, 

we used the Android Ticwatch Pro watch (4×1.2GHz, 1GB RAM) [50] and the Honor 7x Android phone 

(8×2GHz, 3GB RAM) [51]. For emulating the cloud, we used an Intel i7 desktop running Windows 10. 

4.1 Model Comparison 

To determine how different models perform on the watch and phone, we trained and evaluated the 

classification accuracy and speed of our four model architectures. To compare with prior approaches in sound 
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classification, we also evaluated the full-VGG model (281.8MB) on a non-portable device. Below we detail 

the experiments and results.  

4.1.1 Accuracy 

To calculate the “in-the-wild” inference accuracy [52] of the models, we collected our own ‘naturalistic’ 

sound dataset similar to HomeSound [21]. We recorded 20 sound classes from nine locations (three homes, 

three offices, three outdoors) using the same hardware as SoundWatch: the TicWatch Pro with a built-in 

microphone. For each sound class, we recorded three 10-second samples at three distances (5, 10, and 15 

feet). We attempted to produce sounds naturally (e.g., using a microwave or opening the door). For certain 

difficult-to-produce sounds—like a fire alarm—we played snippets of predefined videos on a laptop or phone 

with external speakers (54 total videos were used). In total, we collected 540 recordings (~1.5 hours).  

Before testing our model, we divided our recordings into the three categories (all sounds, high priority, 

medium priority) similar to our training set (Table 1). For the medium and high priority testsets, 20% of the 

sound data that we added was from excluded categories that our models should ignore (called the “unknown” 

class). For example, 20% of the high priority testset included  recordings from outside of the three high 

priority sound classes (fire/smoke alarm, alarm clock, door knock). 

For this experiment, we classified data in each category using the models. The results are shown in Figure 4. 

Overall, VGG-lite performed best (avg. inference accuracy=81.2%, SD=5.8%) followed by ResNet-lite 

(65.1%, SD=10.7%), Inception (38.3%, SD=17.1%) and MobileNet (26.5%, SD=12.3%); a post hoc one-

way repeated measures ANOVA on all sounds yielded a significant effect of models on the accuracy (F3,2156 

= 683.9, p < .001). As expected, the inference accuracy increased as the number sounds decreased from all 

(20 sounds) to medium (10 sounds) and high priority (3 sounds). For example, if we only classify the three 

highest-priority sounds, our average accuracies increase from 81.2% (SD=5.8%) to 97.6% (SD=1.7%) for 

VGG-lite and from 65.1% (SD=10.7%) to 78.1% (SD=11.9%) for ResNet-lite. Finally, in analyzing 

performance as a function of location context, home and office outperformed outdoors for all models. With 

VGG-lite, for example, average accuracies were 88.6% (SD=3.1%) for home, 86.4% (SD=4.3%) for office, 

and 71.2% (SD=8.2%) for outdoors. A post hoc inspection revealed that outdoor sound recordings may have 

incurred interference due to the background noise. 

  

Figure 4: Average accuracy (and SD) of the four models for three sound categories and three contexts. Error 

bars in the graph show 95% confidence intervals. 

To further assess model performance, we computed a confusion matrix for medium-priority sounds, which 

helps highlight inter-class errors (Figure 5). While per-class accuracies varied across models microwave, 

door knock, and washer/dryer were consistently the best performing classes with VGG-lite achieving average 

accuracies of 100% (SD=0), 100% (SD=0), and 96.3% (SD=2.3%) respectively. The worst performing 

classes were more model dependent but generally included alarm clock, phone ring, and siren with VGG-

lite achieving 77.8% (SD=8.2%), 81.5% (SD=4.4%), and 88.9% (SD=3.8%) respectively. For these poorer 

performing classes, understandable mix-ups occurred—for example, alarm clocks and phones rings, which 

are similar sounding, were commonly confused. 
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 HA AC DB DK MW WD PR CH S WR ∅ 

HA 0.9 0.0 0 0 0 0 0 0 0.1 0 0 

AC 0 0.7 0.1 0 0 0 0.1 0 0 0 0.0 

DB 0 0.1 0.8 0 0 0 0.0 0 0 0 0.0 

DK 0 0 0 1.0 0 0 0 0 0 0 0 

MW 0 0 0 0 1.0 0 0 0 0 0 0 

WD 0 0 0 0 0.0 1.0 0 0 0 0 0 

PR 0 0.1 0.1 0 0 0 0.8 0 0 0 0.0 

CH 0 0 0 0 0 0 0 1.0 0.0 0 0 

S 0.0 0 0 0 0 0 0 0.0 0.9 0 0.0 

WR 0 0 0 0 0.1 0 0 0 0 0.9 0 

∅ 0.0 0.0 0 0.0 0 0.0 0.0 0 0 0 0.9 
 

 HA AC DB DK MW WD PR CH S WR ∅ 

HA 0.7 0.1 0 0 0 0 0 0 0.1 0 0.0 

AC 0 0.6 0.2 0 0 0 0.1 0 0 0 0.0 

DB 0 0.1 0.7 0 0 0.0 0 0 0 0 0.1 

DK 0 0 0 0.9 0.0 0.0 0 0 0 0 0 

MW 0 0 0 0 0.9 0 0 0 0.0 0 0.0 

WD 0 0 0 0.0 0.1 0.9 0 0.0 0 0 0 

PR 0 0.1 0.3 0 0 0 0.6 0 0 0 0.0 

CH 0.1 0.0 0.0 0 0 0 0 0.8 0.1 0 0 

S 0.0 0 0 0 0 0 0 0 0.9 0 0.0 

WR 0 0 0 0 0.1 0.1 0 0 0 0.8 0 

∅ 0.0 0.1 0.0 0.0 0.0 0 0.0 0.0 0 0 0.8 
 

 HA AC DB DK MW WD PR CH S WR ∅ 

HA 0.6 0.1 0.1 0 0.0 0 0 0 0.1 0 0.0 

AC 0.1 0.1 0.2 0 0.0 0 0.2 0 0.1 0 0.1 

DB 0 0.2 0.7 0 0 0.0 0.1 0 0 0 0 

DK 0 0 0 0.9 0.1 0.0 0.0 0 0 0 0 

MW 0.0 0 0 0 0.7 0.1 0 0 0.0 0 0.0 

WD 0 0 0 0.1 0.1 0.7 0.0 0.1 0 0 0 

PR 0 0.3 0.3 0 0 0 0.3 0.1 0.0 0 0.0 

CH 0.1 0.1 0 0.0 0.0 0 0.1 0.6 0 0.1 0 

S 0.1 0 0.0 0 0 0 0.0 0.1 0.7 0 0.0 

WR 0 0 0 0 0.1 0.2 0.0 0 0 0.6 0 

∅ 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0 0 0.6 
 

 HA AC DB DK MW WD PR CH S WR ∅ 

HA 0.4 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0 0.1 

AC 0.1 0.1 0.2 0.1 0.0 0.1 0.1 0 0.1 0 0.1 

DB 0.1 0.2 0.4 0.1 0.1 0.0 0.1 0.0 0 0 0.0 

DK 0.0 0.0 0.1 0.6 0 0.1 0 0 0.0 0 0.1 

MW 0.0 0 0 0.1 0.5 0.1 0.1 0.0 0 0.0 0.0 

WD 0 0.1 0.0 0 0.1 0.6 0.0 0.1 0.0 0.0 0.0 

PR 0.1 0.1 0.1 0.0 0.1 0 0.4 0.0 0.0 0 0.1 

CH 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.4 0 0 0.0 

S 0.2 0.1 0.0 0.1 0 0.0 0.0 0.1 0.4 0 0 

WR 0.0 0 0 0.0 0.1 0.0 0.0 0.1 0.1 0.4 0.1 

∅ 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.4 
 

VGG-lite ResNet-lite Inception MobileNet 

Figure 5: Confusion matrices for the four models when classifying 10 sounds in the medium-priority category. 

Darker blue indicates higher accuracy. HA=Hazard Alarm, AC=Alarm Clock, DB=Doorbell, DK=Door Knock, 

MW=Microwave, WD=Washer/Dryer, PR=Phone Ringing, CH=Car Horn, S=Siren, WR=Water Running, 

Ø=Unknown. 

4.1.2 Latency 

In addition to accuracy, the speed with which a model performs classifications is crucial to achieving a real-

time sound identification system.  To evaluate model latency, we measured the time required to classify 

sounds from the input features on both the watch and the phone. We wrote a script to loop through the sound 

recordings in our dataset for three hours (1080 sounds) and measured the time taken for each classification. 

Understandably, the latency increased with the model size: the smallest model, MobileNet, performed the 

fastest on both devices (avg. latency on watch: 256ms, SD=17ms; phone: 52ms, SD=8ms), followed by 

Inception (avg. latency on watch: 466ms, SD=15ms; phone: 94ms, SD=4ms), and ResNet-lite (avg. latency 

on watch: 1615ms, SD=30ms; phone: 292ms, SD=13ms). VGG-lite, the largest model, was the slowest (avg. 

latency on watch: 3397ms, SD=42ms; phone: 610ms, SD=15ms). 

In summary, for phone and watch models, we observed a strict accuracy-latency tradeoff—for example, the 

most accurate model VGG-lite (avg. accuracy=81.2%, SD=5.8%) was the slowest (avg. latency on watch: 

3397ms, SD=42ms). Further, the models MobileNet and Inception performed too poorly for practical use 

(avg. accuracy < 40%). ResNet-lite was in the middle (avg. accuracy=65.1%, SD=10.7%; avg. latency on 

watch: 1615ms, SD=30ms). 

4.1.3 Cloud model (VGG-16) 

To attempt comparison with past work, we also evaluated the performance of the full VGG model [25] on 

the cloud. On average, the inference accuracy (84.4%, SD=5.5%) was only slightly better than our best 

mobile-optimized model (VGG-lite, avg.=81.2%, SD=5.8%). This result is promising because our VGG-lite 

model is more than three times smaller than VGG (281.8MB vs. 845.5MB). However, the full model on the 

cloud performed much faster (avg. latency=80ms, SD=5ms) than our models on phone or watch. 

4.2 Architecture Evaluation 

Besides model evaluation, we also compared the performance of four different architecture designs for the 

SoundWatch system: watch-only, watch+phone, watch+cloud, and watch+phone+cloud. These 

architectures differ in terms of where classification computations occur, battery usage, classification speed, 

network requirements, and privacy—which impacts both technical performance and usability.  

For our architecture evaluation, we used the most accurate model on the watch and phone: VGG-lite; the 

cloud used the full VGG model. Informed by prior work [11,23,29], we measured CPU, memory, and 

network usage, end-to-end latency, and battery consumption. For the test, we used a script running on a laptop 

that looped through the sound recordings for three hours to generate sufficient sound samples (1080). For the 

battery experiment only, the script ran until the watch battery reached 30% or less (i.e., just above the 25% 

trigger for low-power mode), a common evaluation approach (e.g., see [29]).  
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To determine CPU, memory, and network usage, we used Android Profiler [53], a commonly used tool in 

the literature [16]. For the battery, we used Battery Historian [54]. Finally, to determine end-to-end latency, 

we measured the elapsed time (in milliseconds) between the start of the sound recording window to when the 

notification is shown. Below, we detail the results.  

4.2.1 CPU Utilization 

Minimizing CPU utilization is crucial to maximizing the smartwatch’s battery performance and lowering the 

impact on other running apps. Our results for CPU usage on the watch and phone are shown in Figure 6a. As 

expected, the watch’s CPU utilization was lowest when classifications were performed on the phone 

(watch+phone; avg.=22.3%, SD=11.5%, max=42.3%) or in the cloud (watch+phone+cloud; avg.=23.0%, 

SD=10.8%, max=39.8%). Here, the watch is used only for recording sounds, transmitting data via Bluetooth, 

and displaying sound feedback. For watch+cloud, the watch is computing the sound features and 

communicating directly with the cloud via WiFi for classification, which resulted in significantly higher CPU 

utilization (avg.=51.1%, SD=14.9%, max=76.1%). Finally, if the entire classification model runs on the 

watch directly, the CPU utilization is nearly maxed out (avg.=99.0%, SD=2.1%, max=100%) and is thus not 

practical for real-world use.  

4.2.2 Memory usage  

A smartwatch app must also be memory efficient. We found that the memory usage was primarily dependent 

on where the model (281.8MB) was running, hence, watch-only and watch+phone consumed the highest 

memory on the watch (avg.=344.3MB, SD=2.3MB, max=346.1MB) and phone (avg.=341.5MB, 

SD=3.0MB, max=344.1MB) respectively (Figure 6b). This indicates that running a large model like VGG-

lite on the watch could exceed the memory capacity of some modern watches (e.g., [55]). The other app 

processes (e.g., UI, computing features, network) required less than 50MB of memory.  

  

Figure 6: Average CPU (a) and memory (b) usage of the four architectures (using the VGG-lite model). Error 

bars show 95% confidence intervals. 

4.2.3 Network usage 

Having a low network requirement increases the portability of an app, especially for low-signal areas. 

Additionally, some users may feel uncomfortable with their data being uploaded to the cloud, even with 

privacy and security measures in place. For our cloud-based architectures, we found minimal network 

consumption: for watch+cloud, the average was 486.8B/s (SD=0.5B/s, max=487.6B/s) and for 

watch+phone+cloud, it was 486.5B/s (SD=0.5B/s, max=487.2B/s); both are negligible compared to the 

network bandwidth of modern IoT devices. The non-cloud architectures used no network bandwidth as they 

perform all classifications locally on the device(s): either the watch or watch+phone. 

4.2.4 Battery consumption 

A fully mobile app needs to be energy efficient. We measured the battery drain from full charge until 30% 

(Figure 7). First considering the watch-based architectures, the watch-only architecture used a large amount 

of battery: 30% at 3.3 hours, a 6.3x increase over the baseline (without our app). Within the remaining three 

architectures, both watch+phone (30% at 15.2 hours, 1.4x over baseline) and watch+phone+cloud (30% at 

16.1 hours, 1.3x over baseline) were more efficient than watch+cloud (30% at 12.5 hours, 1.7x over baseline), 

because the latter used WiFi which is less energy efficient than BLE [39].  
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Similar trends were observed on the phone; however, running the model on the phone (watch+phone) was 

still tolerable (1.3x over baseline) as compared to the watch (6.3x over baseline). In summary, we expect that 

the watch-only architecture would be impractical for daily use, while the other architectures are usable. 

  

Figure 7: Battery level over time for watch (a) and phone (b) for the four architectures. W-only=watch only, W-

C=watch+cloud, W-P=watch+phone, W-P-C=watch+phone+cloud. Baseline represents the case without the 

SoundWatch app running 

4.2.5 End-to-end latency 

Finally, a real-time sound awareness feedback system needs to be performant. Figure 8 shows a 

computational breakdown of end-to-end latency, that is, the total time spent in obtaining a notification for a 

produced sound. On average, watch+phone+cloud performed the fastest (avg. latency=1.8s, SD=0.2s). This 

was followed by watch+phone (avg.=2.2s, SD=0.1s), which needed more time for running the model on the 

phone (vs. cloud), and watch+cloud (avg.=2.4s, SD=0.0s) which required more time to compute features on 

the watch (vs. phone in watch+phone+cloud). As expected, watch-only was significantly slower (avg.=5.9s, 

SD=0.1s) and is thus, currently unusable (though future smartwatch generations will be more capable). In 

summary, except for watch-only, all architectures had a latency of ~2s; we evaluate whether this is acceptable 

in the user study. 

 

Figure 8: Breakdown of end-to-end latency for the four architectures. 

4.2.6 Summary 

Overall, we found that watch+phone and watch+phone+cloud outperformed the watch+cloud architecture 

for all system parameters. Additionally, the watch-only architecture was impractical for real-life use due to 

high CPU, memory, and battery usage, as well as a large end-to-end latency. Within the phone-based 

architectures, the watch+phone+cloud performed better than the watch+phone. 

5 User Study 
To gather qualitative feedback on our system results and general reactions to smartwatch-based sound 

awareness in multiple contexts, we performed a lab and campus walkthrough evaluation of our SoundWatch 
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app with eight DHH participants. SoundWatch is designed to support all four device architectures and can 

be switched between them; however, based on our system experiments above, we used the best performing 

architecture (watch+phone) and model (VGG-lite) for the user study.  

5.1 Participants 

We recruited eight DHH participants (3 women, 3 men, 2 non-binary) using email, social media and snowball 

sampling (Table 2). Participants were on average 34.8 years old (SD=16.8, range=20–63). Four had 

profound hearing loss, three had severe, and one had moderate. Seven reported onset as congenital and one 

reported one year of age. Seven participants reported using hearing devices: three participants used cochlear 

implants, one used hearing aids, and three used both. For communication, five participants preferred sign 

language, and three preferred to speak verbally. All reported fluency with reading English (5/5 on rating 

scale, 5 is best). Participants received $40 as compensation. 

Table 2: Demographics of the DHH participants. 

ID Age Gender Identity Hearing loss Onset age  Hearing device 

P1 31 Male hard of hearing Moderate Birth Hearing aids 
P2 26 Female deaf Profound 1 year Cochlear implants 
P3 20 Non-binary deaf Profound Birth Cochlear implants 
P4 20 Female hard of hearing Severe Birth Both 
P5 57 Male deaf Severe Birth Both 
P6 23 Female Deaf Profound Birth Both 
P7 38 Non-binary Deaf Severe Birth None 
P8 63 Male Deaf Profound Birth Cochlear implants 

5.2 Procedure 

The in-person procedure took place on a university campus and lasted up to 90 minutes. Sessions were led 

by the first author who is hard of hearing and knows level-2 ASL. A real-time transcriptionist attended all 

sessions, and five participants opted to additionally have a sign language interpreter. Instructions and 

interview questions were presented visually on an iPad (see supplementary materials), while responses and 

follow-up discussion were spoken or translated to/from ASL. The session began with a demographic and 

background questionnaire, followed by a three-part protocol, the first and third of which took place in a quiet 

conference room: 

5.2.1 Part 1: Introduction of SoundWatch prototype (5-10 mins) 

In the first phase, we asked about general thoughts on using smartwatches for sound awareness. Participants 

were then asked to wear the watch running SoundWatch. To demonstrate the app, a researcher made three 

example sounds (speech, door knock, and phone ring) while explaining the watch and the phone UI. 

Participants were also encouraged to make their own sounds such as by speaking or knocking to examine 

SoundWatch’s behavior. 

5.2.2 Part 2: Campus walk (20-25 mins) 

For Part 2, the researcher and the participant (with the watch and phone) visited three locations on campus 

in a randomized order: (1) a home-like location (lounge of our building), (2) an office-like location (a grad 

student office), and (3) an outdoor location (a bus stop). These locations enabled the participants to 

experience SoundWatch in different contexts and soundscapes. In each location, participants used the watch 

naturally for about five minutes (e.g., by sitting on a chair in an office, or walking and conversing outdoors). 

In locations with insufficient sound activity (e.g., if the lounge was empty on weekends), the researcher 

produced some sounds (e.g., by running the microwave, or washing hands). Participants were also 

encouraged to use the sound customization options (mute on watch and checklist on phone) if they desired. 

Before exiting each location, participants filled a short feedback form to rate their experience on a 5-point 

scale and document any open-ended comments. 
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5.2.3 Part 3: Post-trial interview (45-50 mins) 

After completing the three locations, participants returned to the lab for Part 3. Here, we conducted a semi-

structured interview inquiring about the participant’s overall experience and perceptions of SoundWatch 

across the different locations, reactions to the UI, privacy concerns, and future design ideas. We then 

transitioned to asking about specific technical considerations, including accuracy-latency tradeoffs and the 

four possible SoundWatch architectures. For accuracy-latency, we explained the concept and then asked 

about their expectations for minimum accuracy, maximum delay, and whether their perspectives changed 

based on sound type (e.g., urgent vs. non-urgent sounds) or context (e.g., home, office). To help discuss the 

four SoundWatch architectures—and to more easily allow our participants to understand and track 

differences—we prepared a chart (see supplementary materials) enumerating key characteristics such as 

battery or network usage and a HIGH, MEDIUM, or LOW rating based on our system experiment findings. 

Finally, we asked participants to rate the “ease-of-use” of each architecture (high, med, or low) by weighing 

factors such as the Internet requirement, number of devices to carry (e.g., 1 for watch-only vs. 2 for 

watch+phone), and the size of visual display (e.g., small for watch vs. medium for phone), and to specify 

reasons for their rating.  

5.3 Data Analysis 

The interview transcripts and the in-situ form responses were analyzed using an iterative coding approach 

[7]. To begin, we randomly selected three out of eight transcripts; two researchers independently read these 

transcripts and identified a small set of potential codes. These codes were used to develop a mutually 

agreeable initial codebook to apply holistically to the data. The two researchers then used a copy of the 

codebook to independently code the three transcripts, while simultaneously refining their own codebook 

(adding, merging or deleting codes). After this step, the researchers met again to discuss and refine the 

codebook, and resolve any disagreements on the code assignments. The final codebook contained a two-level 

hierarchy (12 level-1 codes, 41 level 2- codes), of which the level-1 codes form the high-level themes. This 

codebook was then used to independently code the remaining five transcripts. For this last step, interrater 

agreement between the two coders, measured using Krippendorff’s alpha [24], was on average 0.79 

(SD=0.14, range=0.62-1) and the raw agreement 93.8% (SD=6.1%, range=84.4%-100). Again, the 

conflicting code assignments were resolved through consensus. 

5.4 Findings 

We detail experience with SoundWatch during the campus walk as well as comments on model accuracy-

latency, different system architectures, and the user interface. Quotes are drawn verbatim from the post-trial 

interview transcripts and in-situ form responses. 

5.4.1 Campus walk experience 

For the campus walk with SoundWatch, we describe the participants’ thoughts on the overall usefulness of 

the prototype and the variation with contexts. All participants found the watch generally useful in all three 

contexts (a home-like lounge, office, and outdoors) to help with the everyday activities. For example, 

“My wife and I tend to leave the water running all the time so this app could be beneficial and 
save on water bills. It was helpful to know when the microwave beeps instead of having to stare 
at the time [display].” (P6) 
“This is very useful for desk type work situations. I can use the watch to help alert me if 
someone is knocking the door, or coming into the room from behind me.“ (P7) 

However, participants (8/8) also noticed problems with SoundWatch, the most notable being delay and 

misclassifications; the latter were higher in outdoor contexts than in others. For example, 

“Delay might be a problem. When a person came into a room, that person surprised me before 
the watch notified me [about door-in-use]” (P5) 
“It doesn't feel refined enough with outside sounds and background noises. The app is perfect 
for quiet settings such as home and outdoor activities (e.g., hiking in the woods). [While 
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outdoors,] some sounds were misinterpreted, such as cars were recognized as water running" 
(P3) 

In-situ feedback form ratings reflect these comments, with average usefulness for lounge (4.8/5, SD=0.4) 

and office (4.6/5, SD=0.5) being higher than for outdoors (3.5/5, SD=0.5). Even with a low usefulness rating, 

all participants wanted to use SoundWatch for outdoor settings, mentioning that they can use context to 

supplement the inaccurate feedback (5/8): 

“Sure there were some errors outdoors, but it tells me sounds are happening that I might need 
to be aware of, so I can [visually] check my environment...” (P7) 

Besides usefulness, the app usage also changed with location. As expected, all participants chose to enable 

different sounds for each location; the obvious common choices were fire/smoke alarm, microwave, water 

running, and speech for lounge; door knock, door-in-use, and speech for office; and bird chirp, car horn, and 

vehicle running for outdoors, as determined from the system logs. The total number of enabled sounds were 

also different for each location (avg. 8.3 for lounge, SD=1.2; 7.5 for office, SD=1.5; and 4.2 for outdoors, 

SD=2.6)—for outdoors specifically, 5/8 participants speculated that the app accuracy may decrease with 

background noise, and thus deselected all un-important sounds to compensate. For example,  

“I deselected ‘Speech’ for outside because I didn't want to know someone was talking outside. 
It's noisy. [...] I only selected ‘car honk’, ‘vehicle running’ and ‘siren’ [as] they are the bare 
minimum I need. It seemed to work well then.” (P2) 

5.4.2 Model Accuracy-Latency Comparison 

Because deep learning-based sound recognition will likely have some error and latency, we asked participants 

about the maximum tolerable delay and the minimum required accuracy for a future smartwatch app. The 

most common general preference was a maximum delay of “five seconds” (5/8) and a minimum accuracy of 

80% (6/8); however, this choice was additionally modulated by the type of sound. Specifically, for the urgent 

sounds (e.g., fire alarms or car horn), participants wanted the minimum possible delay (but would tolerate 

inaccuracy) to get quick information for any required action. For example,  

“because I’ll at least know something is happening around me and I can use my eyes to look 
around and see if a car is honking at me...” (P2) 
“If an important sound is not occurring, I would just be disturbed for a moment, that’s all [...] 
But, if it’s an alarm and if this [watch] misses it, that is a problem.” (P1) 

In contrast, for non-urgent sounds (e.g., speech, laughing) more accuracy was preferred because repeated 

errors could be annoying (7/8). For example,  

“I don't care about speech much, so if there is a conversation, well fine, doesn’t matter if I know 
about it 1-2 second later or 5 seconds later, does it? But if it makes mistakes and I have to get 
up and check who is speaking every time it makes a mistake, it can be really frustrating” (P5) 

Finally, if a sound is a medium priority for the participants (e.g., microwave for P3), participants wanted a 

balance, that is, a moderate amount of delay is tolerable for moderate accuracy (7/8). 

Besides variation with sound type, we asked if the accuracy-latency preference would change with the context 

of use (home vs. office vs. outdoors). In general, similar to the type of sound preferences, participants erred 

towards having less delay in more urgent contexts and vice versa. For the home, participants (8/8) wanted 

high accuracy (more delay is acceptable) because, for example:  

“I already know most of what is going on around my home. And when I am at home, I am 
generally more relaxed [so] delay is more acceptable. But, I would not want to be annoyed by 
errors in my off time.” (P8)  
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For the office, participants (6/8) felt they would tolerate a moderate level of accuracy with the advantage of 

having less delay, because “something may be needing my attention but it’s likely not a safety concern” 

(P8). Finally, preferences for outdoors were split: four participants wanted less delay overall with outdoor 

sounds, but the other four participants did not settle for a single response, saying that the tradeoff would 

depend on the urgency of the sound outdoors, for example: 

 “if it’s just a vehicle running on the road while I am walking on the sidewalk, then I would want 
it to only tell if it’s sure that it’s a vehicle running, but if a car is honking say if it behind me, I 
would want to know immediately.” (P2) 

5.4.3 Architecture Comparison 

By saliently introducing the performance metrics (e.g., battery usage) and usage requirements (e.g., Internet 

connection for cloud), we gathered qualitative preferences for the four possible SoundWatch architectures: 

watch-only, watch+phone, watch+cloud, and watch+phone+cloud during the interview.  

In general, watch+phone was the most preferred architecture for all participants, because, compared to watch-

only, it is faster, requires less battery, and has more visual state available for customization. In addition, 

compared to cloud-based designs, watch+phone is more private and self-contained (does not need Internet). 

However, five participants wanted the option to be able to customize the architecture on the go, mentioning 

that in outdoor settings, they would instead prefer to use watch+phone+cloud because of additional 

advantages of speed and accuracy. This is because in the outdoor context, data privacy was less of a concern 

for them. For example, P6 said: 

“Whenever the Internet is available, I prefer cloud for outdoors instead of home/office because 
of possible data breach at home/office [...] Accuracy problems could be more [outdoors] due to 
background noise and [thus] I prefer to use cloud if [the] internet is available.” 

Watch+cloud was preferred by two participants only for cases where it is hard to carry a phone, such as in a 

“gym or running outdoors” (P1); others did not share this concern as they reported always carrying the 

phone—for example: "I can't really imagine a situation where I would have my watch and not my phone.” 

(P4). Finally, watch-only was not preferred for any situation because of a large battery drain, and a small 

input area (e.g., for customization). 

5.4.4 User Interface Suggestions 

Overall, participants appreciated the minimalistic app design, including the information conveyed (identity, 

loudness, and time) (8/8) and the customization options (mute button, checklist on phone) (7/8). When asked 

about future improvements, participants suggested three. First, they wanted the app to indicate the urgency 

of sounds—for example, using vibration patterns or visual colors (e.g., one pattern/color for high priority 

sounds, and another for low priority sounds). Second, to increase utility, participants suggested to explore 

showing multiple overlapping sounds (5/8), the most urgent sound (3/8), or the loudest sound (2/8) instead 

of the most probable sound as in our design. P4 also said that conveying multiple “possible” sounds could 

help her compensate for inaccuracy:  

“You could give suggestions for what else sound could be when it’s not able to recognize. For 
example, [...] if it is not able to tell between a microwave and a dishwasher, it could say 
“microwave or dishwasher”, or at least give me an indication of how it sounds like, you know 
like a fan or something, so I can see and tell, oh yeah, the dishwasher is running.”  

Finally, two participants (P3, P8) wanted the direction of sound source for outdoor context:  

“I need to know if the vehicle is running or honking behind me or on the side of me. If it’s on the 
side on the road, then I don’t have to do anything. If it’s behind me, I will move away.” (P8) 

When asked whether they would need direction for home or office as well, they replied no, stating that context 

awareness is higher for those locations (2/2): 
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“No, not needed for these contexts [home and office]. I know the locations of where the sound 
[source] could be, if it shows “microwave”, it’s in the kitchen. If it's “speech”, I know where [my 
spouse] is.” (P3) 

6 Discussion 
Our work reaffirms DHH users’ needs and user interface preferences for smartwatch-based sound awareness 

[8,32] but also: (1) implements and empirically compares state-of-the-art deep learning approaches for sound 

classification on smartwatches, (2) contributes a new smartwatch-based sound identification system with 

support for multiple device architectures, and (3) highlights DHH users’ reactions to accuracy-latency 

tradeoffs, classification architectures, and potential concerns. Here, we reflect on further implications and 

limitations of our work. 

6.1 Utility of smartwatch-based sound classification 

How well does a smartwatch-based sound classification tool need to perform to provide value? As both our 

systems evaluation and user study reveal, this is a complex question that requires further study. While 

improving overall accuracy, reducing latency, and supporting a broad range of sound classes is clearly 

important, participants felt that urgent sounds should be prioritized. Thus, we wonder, would an initial sound 

awareness app that supports three to ten urgent sounds be useful? More work is needed here. One way to 

explore this question would be by releasing SoundWatch—or a similar app—to the public with multiple 

customization options, then studying actual usage and soliciting feedback. However, this approach also 

introduces ethical and safety concerns. Automatic sound classification will never be 100% accurate. High 

accuracy on a limited set of sounds could (incorrectly) gain the user’s trust, and the app’s failure to recognize 

a safety sound (e.g., a fire alarm) even once could be dangerous. In general, a key finding of our research and 

of other recent work [8,32] is that users desire customization (e.g., which sounds to classify, notification 

options, sound priorities) and transparency (e.g., classification confidence) with sound awareness tools. 

6.2 Towards improving accuracy 

Our user study suggests a need to further improve system accuracy or at least explore other ways to mitigate 

misclassification costs. One possibility, as our participants suggested, is to explore showing multiple 

“possible” sounds instead of the most probable sound—just as text autocomplete shows n-best words. 

Another possibility is to sequentially cascade two models (e.g., see [35]), using the faster model to classify a 

small set of urgent sounds and to employ the slower model for lower-confidence classifications and less-

urgent sounds. End-user customization should also be examined. While installing the app, each user could 

select the desired sounds and the required accuracies, and the app could dynamically fine-tune the model 

(e.g., by using a weighted average accuracy metric based on the sound urgency). Finally, as proposed by 

Bragg et al. [3], researchers should explore end-user interactive training of the model. Here, guided by the 

app, participants could record sounds of interest to either improve existing sound classes or to add new ones. 

Of course, this training may be tedious and difficult if the sound itself is inaccessible to the DHH user.  

6.3 Privacy implications 

Our participants' showed concern for cloud-based classification architectures: they valued their own “sound” 

privacy and of others around them. However, uploading and storing data on the cloud has benefits. These 

datasets can be used for improving the classification model. Indeed, modern sound architectures on IoT 

devices (e.g., Alexa, Siri) use the cloud for exchanging valuable data. A key difference to our approach is 

that these devices only transmit after listening to a trigger word. Thus, what are the implications for future 

always-on, always-listening sound awareness devices? We see three. First, the users should have control of 

their sound data. Indeed, P3 corroborated this:  

"I can see myself potentially using the watch+phone+cloud, if I can, [...] open my laptop and 
[select/deselect] what [sound data] gets uploaded and who gets to see what. Otherwise I fear 
that [someone] may misuse something that I don't want them to.” 
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This data upload can also be customized based on context (e.g., the office might have more private 

conversations than outdoors). Second, future apps will need clear privacy policies such as GDPR [56] or 

CCPA [57] that outline how and where the data is stored and what guarantees the users have. Finally, users 

should always have access to their data and to potentially delete it, in entirety, from the cloud. 

6.4 Future smartwatch applications 

In contrast to past wearable sound awareness solutions [9,18,22], we used commercially available 

smartwatches, a mainstream popular device that is more socially acceptable than HMDs [9,18] or custom 

hardware-based [22,34] solutions. A recent survey with 201 DHH participants [4] showed that smartwatch-

based sound awareness was preferred over smartphones as well. So, what are other compelling applications 

of a smartwatch for DHH users? Full speech transcription, a highly preferred feature by DHH users [4,17] is 

difficult to accommodate on the small watch screen, but future deep learning work could explore highlighting 

important keywords or summarizing the conversation topics. Sound localization is also highly desired [3,8] 

and could be explored by coupling the watch with a small external microphone array or designing a custom 

watch with multiple microphones. But, how best to combine different features (e.g., topic summarization, 

direction, identity) on the watch is an open question. Goodman et al. [8] recently investigated different 

designs for combining sound identity, direction, and loudness, however, this study was formative with a focus 

on user interface design. Future work should explore the system design of showing multiple features with 

classification confidence—a challenging problem given the smartwatch’s low-resource constraints. 

6.5 Limitations 

Our lab study included a 20-min out-of-lab component intended to help participants think about and 

experience SoundWatch across “real-world” contexts. While useful as an initial, exploratory study, important 

pragmatic issues could not be investigated such as user perception of battery life, integration of the watch 

into daily life, and long-term usage patterns. Future work should perform a deployment study and compare 

results with our lab findings.  

Moreover, our model accuracy results, though performed on real-life recordings of 20 sounds, do not 

accurately reflect real-world use as other sounds beyond those 20 may also occur. Our tests, however, were 

enough for our goal to compare the models and contextualize the user study findings. A more accurate 

experiment would include a post hoc analysis of sound data collected from longitudinal watch use.  

Finally, we considered our DHH participants (who identify as deaf, Deaf or hard of hearing) as a homogenous 

group while reporting user study findings. Indeed, past work [3,4] shows that these groups, despite their 

cultural differences, have synergetic access needs and preferences. Recruiting cross-culturally allowed us to 

explore solutions for a diversity of users. Nevertheless, future work should examine how preferences may 

vary with culture and hearing levels. 

7 Conclusion 
In this paper, we performed a quantitative examination of modern deep learning-based sound classification 

models and architectures as well as a lab exploration of a novel smartwatch sound awareness app with eight 

DHH participants. We found that our best classification model performed similar to the state of the art for 

non-portable devices while requiring a substantially less memory (~1/3rd), and that the phone-based 

architectures outperformed the watch-centric designs in terms of CPU, memory, battery usage, and end-to-

end latency. Qualitative findings from the user study contextualize our system experiment results, and also 

uncover ideas, concerns, and design suggestions for future wearable sound awareness technology. 
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