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Abstract—Traveller information, route planning, and service
updates have become essential components of public transport
systems: they help people navigate built environments by
providing access to information regarding delays and service
disruptions. However, one aspect that these systems lack is a
way of tailoring the information they offer in order to provide
personalised trip time estimates and relevant notifications to
each traveller. Mining each user’s travel history, collected by
automated ticketing systems, has the potential to address this
gap. In this work, we analyse one such dataset of travel history
on the London underground. We then propose and evaluate
methods to (a) predict personalised trip times for the system
users and (b) rank stations based on future mobility patterns,
in order to identify the subset of stations that are of greatest
interest to the user and thus provide useful travel updates.

I. INTRODUCTION

Interactive maps, route planners, and real-time service
alerts have become essential components of public transport
systems. However, these systems notably lack an ability to
dynamically tailor information to the individual needs of
each traveller [1]. Most online transit tools, for example,
have yet to incorporate an understanding of travellers’
preferences or mobility-related requirements. Personalisa-
tion offers a rich opportunity to match information to the
appropriate individual traveler and reduces the need for
manually searching for relevant transit notifications. In this
paper, we explore automated methods to enable public transit
personalisation; the goal here is to explore the viability
of personalised travel information with little-to-no direct
feedback from the travellers themselves.

A significant historical obstacle to personalising the pub-
lic transport experience has been the lack of data about
individual traveller preferences and routines. However, the
introduction and widespread adoption of automated fare
collection (AFC) systems offer a potential channel to this
missing data. These new payment systems create a digital
record every time a trip is made, which can be linked back to
the individual traveller. Mining the travel data that is created
as travellers enter and exit stations can give vast insight into
the travellers themselves: their implicit preferences, travel
times, and commuting habits.

In this work, we focus on what AFC data can reveal about
individual traveller behaviour. We use data collected from
the London Underground (tube) system, which implements
electronic ticketing in the form of RFID-based contact-less

smart cards (Oyster cards). Indeed, recent work [2] states
that, on average, only 46-62% of the time that users spend
in the tube is actually spent riding the trains. The rest of
the time is spent interchanging, walking, or waiting: thus,
differences between users will strongly impact travel time
and should be incorporated into transport route planning
and notification services. We show how AFC systems can
be used to uncover individual differences in travel patterns
that, in turn, can be used to enable personalised transit
services. We focus on two facets of personalisation, both
of which can be formalised as prediction problems: (a)
predicting personalised travel times between any origin and
destination pairs to provide users with accurate estimates of
their transit time, and (b) predicting and ranking the interest
that individual travellers will have for alert notifications
about particular stations based on their past travel histories.

In particular, this paper makes the following contributions.
First, we perform an extensive analysis of a large corpus of
anonymised per-person usage of the London underground
(Section II). Although aggregate summaries of the data
point toward a consistent use of the system, we highlight
measurable differences in transit usage between travellers
that more concretely motivate the need for personalisation.
Second, we propose and evaluate a set of simple algorithms
to personalise travel time estimation (Section III). In doing
so, we aim to implicitly capture aspects of underground
usage that affects travel time such as route choice, the ability
to physically move about a station, and route familiarity. We
also evaluate a means of combining the different methods
that takes into account the varying amount of data available
for each prediction. Finally, we design and evaluate (Sections
IV) a set of ranking algorithms that aim to identify which
stations will be of interest to each traveller in their future
journeys. We believe that this paper not only highlights the
potential value of AFC datasets to the data mining and
personalisation research communities, but will also be of
value to public transportation planners and operators.

II. THE LONDON UNDERGROUND AFC DATASET

The London Underground consists of 11 interconnected
underground lines, six fare regions (zones), and over 250
tube stations. In this analysis, we use two datasets of
London’s tube usage from different 83-day periods (D1,
May-July 2009 and D2, October 2009-January 2010). Each
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Figure 1. (a) An aggregate view of weekly/week day tube activity. Note how a two-spike temporal pattern corresponding to heavy commuting periods is
visible on weekdays but not on weekends. (b) Trip time distribution

dataset is a 5% sub-sample of all users who were recorded
during the two periods, with data points being tuples in the
form < u, (o, d), to, td >: the unique, persistent user id (u),
the trip (with origin (o) and destination (d) stations), the
time stamp to when u entered the origin station and the
time td when u exited from the destination station. These
time stamps allow us to compute trip time in minutes. We
first filtered inconsistent entries from the data: we removed
trips with invalid or missing origin or destination stations
(caused by users who did not touch their ticket to the
reader when starting or ending a trip), trips with the same
origin and destination, and trips whose arrival timestamp
was prior or equal to the departure time. Approximately
7% of the raw data was discarded; we were left with
7,534,700 trips by 298,294 travellers in D1 and 7,702,713
trips by 309,588 travellers in D2. We begin by analysing the
aggregate temporal usage patterns of the underground and
the underlying differences that exist in individual traveller
patterns.

A. Aggregate Behaviour. The primary focus here is to
highlight systemic patterns that (a) give a broad perspective
of the usage of the system and (b) may impact our ability
to accurately predict travel times or stations of interest. This
analysis also provides a necessary context within which to
interpret our results.

1. Temporal Patterns. Figure 1 plots the cumulative
number of ongoing trips over time: over the course of a
week and weekday. The two distinct peaks in weekday
activity (Figure 1(b)) reflect London’s dependence on the
tube as a means of commuting: the largest proportion of
trips occur within the morning commute, 6.30 to 9.30am
(22.95%), and the longer spanning evening commute, 4.30
to 8pm (29.19%). Unsurprisingly, these temporal patterns
are not shared by weekends or national holidays where the
number of ongoing journeys steadily increases during the
course of the day until approximately 7pm.

2. Travel Time. The global mean trip time for D1 is
26.81 ± 14.93 minutes, while for D2 it is 27.11 ± 15.12
minutes; the overall average trip time for the entire system is

roughly half an hour. Finer grained travel time estimates can
be obtained by incorporating zoning information. London
tube zones are used to demarcate the city and its surround-
ing area into pricing tiers. Inter-zonal average travel time
increases proportionally to the number of traversed zones;
the longest average trips tend to be those between Zones 1
and 6.

Lastly, we turned to the individual trips. Figure 1(c) is the
overall trip time histogram: trip times in the tube network
tend to follow a near-gaussian distribution with a long tail.
From the data, we also computed trip time averages and
standard deviations for each possible pair. Approximately
90% of the trips are within ten minutes of the average; in
fact, about 40% of the trips are within 5 minutes of the
respective average trip time. In summary, coarse view of
London underground’s usage patterns points to two main
results: (a) the tube is primarily used to commute to and
from work, and (b) user travel times are very close to the
mean travel times. This analysis would suggest the existence
of a single type of traveller. In the following section, we
demonstrate that this is not the case.

B. Traveller Characteristics. In this section, we highlight
user-centric patterns of travel: repeat trips over time, usage
similarities between different groups of users and relative
travel times. The emerging differences in usage and travel
time emphasise the potential that personalisation has to offer
in this context.

1. Repeat Trips. In Figure 2(a) we show the temporal
view of repeat trips: by the end of each dataset (83 days),
approximately 60% of the user-trip pairs are repeat trips.
The vertical plot lines represent weekends, where users tend
to be less regular in their movements than during commuting
weekdays. Commuting behaviour can be further illustrated
by tracing the number of users per day whose last journey
ends where their first journey began. We found that over
88% of the users per day form a loop with their travels. Note
that this does not take into account multi-modal transport.
In fact, over 55% of the users who did not form a circuit
with their trips took only 1 tube trip in that respective day.
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Figure 2. (a) Proportion of Repeat Trips Over Time for each Dataset (vertical lines are weekends), (b) Number of users (top), and average number of
stations visited (bottom), as trip observations increase, (c) User activity of different clusters.

Figure 2(b) plots the number of trips that a user takes
against the average number of stations that the user has vis-
ited. Note that as the number of trip observations increases,
so does the breadth of stations that the user, on average, has
visited. Interestingly, the graph appears to be segmented into
two unique parts: it is composed of two point wise bounded
parabolic growth functions with asymptotes corresponding
roughly to 18 stations and 25 stations respectively. The pivot
point between the two functions (at 110 trips) corresponds
to roughly 2 trips/day on average in our dataset. The key
here is that the number of stations visited differs between
travellers along with their frequency of travel.

2. User Activity Clustering. The overall average trips per
user (in each of the full 83-day datasets) is 25.26 for D1,
and 24.88 for D2 (both medians are 9), with approximately
9% of each set composed of users who we only see once.
On the broadest level, users can be split into groups based
on when they travel; whether they use the system throughout
the entire week, or only during weekdays or weekends. As
summarised in Table I, the smallest group is the users who
only travel on weekends (approximately 8% of each dataset),
while the largest group includes users who travel throughout
the entire week including both weekday and weekend travel
(56%). A noteworthy proportion of users (35%) travels only
on weekdays. We delved further into the differences that
emerge in temporal usage patterns by clustering the users’
weekday travel. We applied dendrogram clustering [3], a
form of agglomerative hierarchical clustering, on vectors of
binned user trip start times. More formally, we split the 24-

Users (%) Avg Trips Per User
D1 D2 D1 D2

Week-End Only 7.71 7.61 2.33 2.32
Week-Day Only 35.40 35.81 10.73 10.45
Both Week/Weekend 56.89 56.58 37.41 37.05
Total 100 100 25.26 24.88

Table I
GROUPS OF USERS AND AVERAGE TRIPS PER GROUP: A SMALL

PROPORTION OF USERS ONLY TRAVEL ON WEEKENDS.

hour day into 5 segments using Figure 1(b); each segment
represents a particular time of day. For each user who has
made more than a single trip, we construct a frequency
vector denoting the number of trips started within each time
segment. The similarity between the travel patterns of user
a and b, who have respectively made a total of A and B
trips, can then be computed as follows:

da,b =
1

5

∑
i

|ai
A
− bi
B
|

Each iteration of the clustering algorithm merges the two
users who share the smallest value of da,b; the resulting
vector is the sum of the two users. Due to the high volume
of users that each dataset contains, we clustered 10 uniform-
randomly selected subsamples of 1, 000 users and averaged
the results. The iteration stops when a pre-defined number of
clusters have been formed: we manually tuned and examined
the results of varying cluster thresholds, and settled on 6 as
this produced a variety of diverse user profiles.

Cluster Results. Based on the clusters found above,
we plot the cumulative start times per profile in Figure
2(c). Note that these images are not plots of the cluster
centroids themselves, but rather are the cumulative start
times of all members of the given cluster. The six profiles
that are produced are (reading from left to right): morning-
only travellers, irregular travellers (with, for example, a peak
immediately after the end of the evening rush hour), day-
time-only travellers, users who travel most frequently in
the evening, early-morning commuters (who go to work
before the normal rush hour), and, lastly, the commuting
majority. The clusters each vary in size, ranging from very
few average users (0.26%) for the morning-only travellers
to an average of 50.46% for the commuting majority. The
overall cumulative view of the system as depicted in Figure
1(b) only reflects the largest of these groups. However, the
second largest cluster (43%) is that of the day-time-only
travellers; a significant portion of the population does not fit
the two-spiked commuting pattern.

3. Travel Time. As above, we also explored the extent



that travel time differences emerge between users. We first
looked at the relation between trip familiarity, or the number
of times that a user has taken a trip, and their trip time
relative to the overall mean. Given a user u who, on average,
completes a trip (o, d) in uo,d minutes (while the overall
trip average time is mo,d), we can compute the normalised
residual ro,d trip time. A positive residual indicates that
the user tends to be slower than the overall mean, while a
negative residual shows that the user’s average travel time is
faster than the mean. We computed the residuals for all trip
observations; the results show that trip residuals are positive,
on average, when the trip frequency is small (less than 3);
however, as trip frequency increases beyond 3, the residuals
become, on average, negative. The overall results point to
the fact that as users become more familiar with a trip, they
also tend to be faster in completing it.

In the following sections, we build models that estimate
trip time by incorporating each users travel history into the
estimation algorithms. This perspective addresses many of
the shortcomings of the above, such as accounting for trip
familiarity and per-user transit speed differences, and aims at
capturing the hidden variables that relate to the system users:
their physical aptitude (i.e., their ability to move about the
train station), their knowledge of the system, and their route
choices.

III. PERSONALISED TRIP TIME ESTIMATION

In this section, we describe our proposals for com-
puting personalised estimates of trip time. None of our
proposed models below incorporate information about the
London underground network topology, historical train ar-
rival/departure data, service disruption histories, geographic
distances between stations, route transfer data, station size,
or train schedule information. Access to any of these addi-
tional datasets may very well improve personalised trip time
estimation.

Baselines. We have three available baseline estimates; two
of these were discussed in the previous section. They include
(a) the global mean trip time (roughly half an hour), (b)
the inter-zone transit time zo,d and (c) the mean trip time
between the station of origin and destination.

User Self-Similarity. The first assumption that we incor-
porate is that of user self-similarity: when users repeatedly
make the same trip, they will tend to follow the same path
within the system and therefore have similar travel time
performance. We thus define Uo,d ⊂ To,d as the set (of
size M , with members xu,t) of user u’s trips between o and
d, and uo,d as the user mean time of these observations. In
order to compensate for potential outliers in the user’s set of
trip times, we define uo,d as the geometric mean of observed
times:

uo,d =

(∏
Uo,d

xu,t,

)1/M

= exp

 1

M

∑
Uo,d

lnxu,t



If the user has not taken the given trip before, then the overall
trip mean is returned. More generally, the reliability of the
mean computed by the moving average will be proportional
to the number of trip observations M that are available.
We use M as a weight: the personalised prediction p̂u,o,d
can thus be computed as a 1

M -weighted combination of the
baseline and the user mean.

Trip Familiarity Model. In the previous section, we
discussed the relation between the number of times M we
have observed a user taking a trip (which we use to quantify
how familiar she is with it) and the average time it takes
her to complete it: trip time is inversely proportional to
familiarity. These observations translate into a predictive
model as follows. Given a user u who has taken a trip
between o and d M times, we define Fo,d as the set of
user mean times uo,d of all users who have familiarity fu
that is at least M . The weighted average of all members of
this set forms the personalised prediction:

p̂u,o,d =

∑
Fo,d

(uo,d × fu)∑
Fo,d

fu

The intuition behind this model is to partition, for each
traveller, all other users into two groups and use the most
relevant one, in terms of familiarity, to compute trip time.

Trip Context Model. The third method we examine
aims to uncover any similarities between users based on
the temporal context of their travel. In this model, we do
not explicitly formulate or quantify the precise context, but
instead assume that users who begin travelling at the same
time implicitly experience similar contexts. Given a time
interval of size w, we assume that all users who travel from
o to d, starting their trip within a window of size 2w centred
on t, are similar to the user u who travels from o to d
at time t. The user’s trip time is estimated with geometric
mean of all trip times in this window. Broadly speaking,
this method is a simple two sided moving average. However,
given the sparsity of our underlying dataset, there may be
a substantial number of travel windows for which we have
little to no data for wo,d. To account for this, we implement
a weighting scheme that is similar to that used in the self-
similarity method above. Given a trip, for which we have
M observations and N trips within the pre-defined window,
personalised predictions are defined as a N

M -weighted linear
combination of the baseline and window mean.

Combined Model. We adopt a chaining approach to
combine methods. Each of the proposals above relies on
a baseline to resort to when there is insufficient data. For
example, if a user has taken a trip before, we can use
the self-similarity method. In our combined approach, we
iteratively replace the baseline of one method with the output
of another. In our experiments, we chain the methods as
follows: the zone transfer is combined with the trip mean
(mzo,d), which becomes the baseline for the trip context
model, which is then fed into the user similarity approach.
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Figure 3. Decompositions of prediction error, by group (week-day only, week-end only, week-long travellers), by trip time, and by travel history size.

MAE (Mins) MAPE (%)
Method D1 D2 D1 D2

Baselines
Global Mean 11.454 11.981 65.56 63.49
Zone Mean 8.561 9.215 46.88 47.36
Trip Mean 3.109 3.650 13.31 14.02

Personalised Models
Trip Context 2.986 3.601 12.33 13.42
Familiarity Model 2.989 3.599 12.28 13.37
Self-Similarity 2.924 3.556 11.97 13.17
Combined Model 2.922 3.556 11.95 13.17

Table II
PREDICTION MEAN AVERAGE ERROR AND MEAN AVERAGE

PERCENTILE ERROR RESULTS

Prediction Evaluation. In order to test the predictive
power of the models above, we split our data into training
and test sets using the trip time stamps. We used the last 9
days of data for testing (approx. 90%/10% split). We pruned
a small proportion of both users and origin-destination pairs
from the test set that had not been seen before. We used the
Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE) to quantify trip prediction error [5].

The results for each model over the two datasets is shown
in Table II. All of the proposed personalisation methods,
while producing MAE results that lie between 2 and 3
minutes, outperform the best baseline; the self-similarity ap-
proach, when used alone, is the most accurate. The combined
model produces the most accurate results overall, but with
diminishing returns. We compare the predictive accuracy for
weekday-only, weekend-only, or full-week travel in Figure
3(a). The error is not distributed evenly between the groups;
those who only travel on weekends show consistently high
MAE values. In fact, the personalised methods do not
outstrip the baseline for these users. Figure 3(b) plots the
relation between the actual time the trip took (td − to) and
the prediction error. It shows that the simple proposals that
we put forward improve predictions from the baseline in
all trips; moreover, the improvements are indeed greater for
shorter trip lengths. In Figure 3(c), we plot the average error
against the trip frequency: these results clearly establish the
potential benefits of personalisation, since the divergence
between the baseline and the personalised approaches grows

as travellers continue to use the system. Overall, we found
that, while mean trip times already provide good estimates
of travel time, simple personalisation techniques can produce
more accurate results.

IV. STATION INTEREST RANKING

The second prediction problem relates to identifying the
subset of the transport system that each user is interested
in (i.e., stations they often visit). We view this context as a
ranking problem: we would like to create, for each user, a
personalised ranking of the stations s ∈ S that will reflect
their future journeys. We describe three such methods:

Baseline. The baseline (bs) generates the same ranking
for each user, by sorting the stations according to popularity:
stations that are frequented the most are ranked higher than
those that are visited less.

User History. The user history method augments the
baseline to include higher weights for stations that the user
u has visited in the past.

Station Similarity Model. Given our dataset, we can
create a co-occurrence station matrix C, where each entry
ci,j is the frequency count of trips that have stations i and j
as their endpoints. Higher values of ci,j thus denote stations
that are similar to each other, in that users frequently travel
between them (this is usage similarity rather than geographic
proximity). The ci,j values are normalised with each row
sum, to produce normalised matrix W , with entries wi,j .
This matrix can then be used to increase the score of stations
that are similar to those that the user has previously visited.
Given a station s in the set of stations Su visited by user
u, we increase the score of all of s’s neighbours n in Ns

by ws,n. The final weighting for each station is produced as
follows:

r̂u,s = bs + βhu,s +
∑
s∈Su

(∑
n∈Ns

ws,n

)
Since a particular subset of stations are popular destina-

tions, then these neighbours may appear in more than one of
u’s station’s neighbourhoods: its weights may be increased
more than once. In order to accommodate for this, we give a



Percentile-Ranking
Method D1 D2
Baseline 0.2467 0.2561

User History 0.0642 0.0611
Station Similarity 0.0591 0.0555

Table III
STATION INTEREST RANKING RESULTS

higher weight β to the history weights hu,s when computing
the final score. This model is a similarity thresholded nearest
neighbour approach, where distance is based on usage
similarity. The choice of a station neighbourhood model,
rather than a user neighbourhood model, has the benefit of
being highly scalable.

Interest Ranking Evaluation. We adopt a measure that
has previously been used to evaluate ranking on the web: the
average percentile ranking [4]. We define the interest that a
user u has in station s as the proportion of times that the
user starts or ends a journey at the station throughout the
test period. We also restrict our test set to those users who
have appeared at least once in the training period. We define
ranku,s as the percentile ranking of station s for user u in
the ranked list of stations; if ranku,s = 0, then the station
appears first in the list, while ranku,s = 1 implies that
the station was the last in the list. We combine these with
each user’s interest in the station interestu,s and average
the results:

rank =

∑
u,s interestu,s × ranku,s∑

u,s interestu,s

This measure produces values between 0 and 1. Lower
values are inherently better; they reflect the case where
stations that will be frequently visited (high interest) are
ranked higher.

Results. The percentile-ranking results, for each dataset,
are shown in Table III. Both personalised methods provide
a large improvement over the baseline by reducing the
percentile ranking to less than 0.07. These figures tell us
that using the above techniques to rank station notifications
would significantly improve the relevance of information
residing in the top-ranked places: by using AFC data, we
can give users important notification updates without any
further input from them.

V. RELATED WORK

There is a broad literature on predicting travel time [6];
however, current solutions either do not have access to
per-user data or explicitly focus on the aggregate usage
[2]. We take a personalised perspective: we mine public
transport usage data to uncover individual characteristics
of travel behaviour and leverage it to build user-tailored
travel time estimates. Our data prevents us from building
trajectory or sub-route-based models (e.g., [5] or [3]) since
the actual route that a user undertakes between any origin
and destination is unknown to us; in many cases, there are a
wide variety of candidate routes. An important area of future

work will be to incorporate additional contextual information
such as the London underground network topology, train
scheduling information, and service disruption history in
order to further bound our estimates and assist in identifying
anomalies. Personalisation has been a key component of
collaborative filtering-based recommender systems [7]. A
noteworthy point of these methods is that they use measured
similarities across items (in our case: between two differ-
ent trips), in order to formulate predictions. Our methods,
instead, focus on inter-user similarity within a single trip.
Preliminary analysis of the data shows that relative transit
speed is not consistent: just because a user travels quickly
between an origin and destination, does not mean that s/he
will be faster than others on a different trip.

VI. CONCLUSION

This paper is the first to explore the potential opportunities
that AFC datasets provide for personalisation services.
Our analysis of two large datasets of London’s tube usage
demonstrated that there are substantial differences between
travellers that emerge from this usage data. Based on
these insights, we proposed three simple personalised
prediction methods. We showed that not only do these
methods outperform the baseline, but tend to improve over
time as travellers continue to use the system. We also
proposed a means of ranking stations to match traveller’s
interests; we showed that by tracking where users have
been, systems that anticipate where they will go can be
built. Ultimately, the key prediction—whether it be trip
time or station interest—will be application-specific. The
key conclusion remains: there are a variety of benefits
and uses for incorporating data about system users into
intelligent transport systems.
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