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How do sidewalks change over time? Are there geographic or socioeconomic patterns to this change? These questions 
are important but difficult to address with current GIS tools and techniques. In this demo paper, we introduce three 
preliminary crowd+AI (Artificial Intelligence) prototypes to track changes in street intersection accessibility over time—
specifically, curb ramps—and report on results from a pilot usability study. 
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1 Introduction 
In 1990, the US passed the Americans with Disabilities Act (ADA) [1] requiring that public infrastructure—including 
sidewalks and street crossings—be accessible. Yet, more than 30 years later, cities struggle to meet accessibility 
requirements, often only pursuing large-scale sidewalk renovations in response to civil rights litigation such as in New 
York [12], Seattle [9], and Los Angeles [18]. Observing these challenges and to help stimulate and structure ADA 
renovations and city planning, in 2015, the US Federal Highway Administration requested that local governments 
develop sidewalk ADA transition plans, including an inventory of accessibility barriers and a description of accessible 
renovations [25]. In a recent study of 401 municipalities, however, only 54 (13%) had published plans and only seven 
met the minimum ADA criteria [7].  

Such findings reflect the challenge in making infrastructure accessible. Viable solutions require substantial political, 
economic, and technical investment—training, resources, community involvement, specialized tools, and the work and 
coordination of multiple governmental agencies [19]. And there is a lack of open tools, techniques, and datasets to 
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track how urban infrastructure is becoming more or less accessible. To help understand how sidewalks are changing, 
where resources are being invested, and whether governments are acting on ADA requirements, our research group is 
developing new spatio-temporal tracking tools to analyze, visualize, and study changes in urban accessibility over 
time. While our current focus is on the US, tracking sidewalk accessibility is of interest to cities across the world [8]. 
With our tools, we hope to support overarching research questions such as: How does sidewalk infrastructure change 
over time? What are the spatiotemporal patterns of change? How do these changes correspond to socioeconomic and 
demographic factors? Where does inaccessibility persist? As a preliminary step towards addressing these questions, 
we introduce three new experimental crowd+AI (artificial intelligence) prototypes for semi-automatically tracking 
changes in street intersections, specifically curb ramps (or “curb cuts”)—Figures 1-3. While curb ramps are only one 
part of accessible urban infrastructure, they are critical to mobility and required by the ADA [29]. Moreover, prior 
work has found that trained computer vision (CV) models can detect curb ramps at higher accuracy than surface 
degradations or sidewalk obstacles [11,27], making curb ramps a good starting place for initial crowd+AI work.  

Studying and characterizing spatiotemporal patterns of urban change from remote imagery is a longstanding 
thread in the urban- and geo-sciences [13,23,28]. Recent developments in CV, specifically deep learning, and the 
widespread availability of historic street-level imagery have enabled new urban change detection techniques 
[3,5,15,21,26]. However, limited work exists on applying these techniques to urban accessibility to characterize how 
and where sidewalks are changing. Below, we describe design considerations for tracking accessibility-related changes 
in street intersections, three preliminary crowd+AI prototypes, and results from a pilot usability study with five users. 
During the ASSETS demo session, we will provide interactive demonstrations of our prototypes, solicit feedback from 
attendees, and guide discussion about open challenges and the future of sidewalk “change tracking” tools. 
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2 UI Design Considerations for Tracking Changes in Sidewalks 
In brainstorming and working on initial prototypes, we developed the following design considerations:  

Humans struggle with change detection. Studies in perceptual psychology have consistently found that 
humans perform poorly in identifying differences between images [17,22]. How can we create tools that help humans 
identify and label accessibility features in time-series imagery while mitigating these perceptual effects [22]? 

Leverage temporal similarity. Unlike general street scene labeling tasks [6,16], we are interested not just in 
identifying objects in a single snapshot but tracking these objects over time. How can we leverage structural 
similarities in time-series photography to create efficient and accurate labeling interfaces?  

Combine AI + human labeling. Similarly, how can humans + machine learning work together to maximize 
labeling efficiency and accuracy [4,14]? How should AI-based detections and uncertainty be represented to humans? 
Can the underlying ML model also leverage similarities across time-series images? 

Interactive training. Ultimately, to scale our approach, we will deploy our interfaces to crowdworkers who likely 
have minimal experience with sidewalks, curb ramps, and advanced labeling interfaces. How can we develop 
interactive training UIs that allows our users to quickly learn and perform accurately in our tasks? 

3 Three Crowd+AI Interfaces for Tracking Curb Ramps Over Time 
Towards these considerations, we have developed three early-stage interactive prototypes for tracking changes in 
street intersections over time, which differ in the amount of simultaneous time-series imagery shown, how labels 
propagate from one time-series snapshot to the next (using a derivation of linked editing [24]), and how we 
incorporate a deep learning model for automatic curb ramp detection (from [27]). Rather than ask users to detect 
changes, users find and label curb ramps in each image. To improve labeling efficiency, we leverage similarities across 
time shots to auto-propagate labels through linked editing and CV. Each prototype begins with a step-by-step tutorial 
to train users on the task and the interface. Prototype details with example screenshots are shown in Figures 1-3.  

For our historic street scene dataset, we use Google Street View’s “time machine” feature, which provides high-
resolution street-level panoramas dating back to 2007 captured every ~1-3 years. Our test set consists of 100 
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intersections drawn from Washington DC and Seattle (50 each). The DC dataset contains an average of 6.4 time-series 
images per location (SD=1.7) while Seattle has 7.8 (SD=2.6). The first capture dates are 2008 and the last are 2019 (while 
our research is ongoing, this initial test dataset was created in 2019). 

4 Pilot Usability Study 
To assess the usability and understandability of our prototypes and to prepare for larger web-based deployments, we 
conducted an in-person “think aloud” usability study with five participants (ages 20-45; all had technical backgrounds). 
Sessions were ~50 minutes. To simulate the experience of using the prototypes in an online deployment, we provided 
limited instruction and, instead, asked participants to follow the interactive tutorials.  

Findings. While users were appreciative of the step-by-step tutorials, some aspects of label propagation, and the 
promise of CV-assisted labeling, we found important areas for future work. First, participants wanted more 
information on how they should label—the size of their bounding boxes, pixel-level precision, etc. Second, participants 
were confused about label propagations—should they trust them or modify them? Because auto-propagations only 
work in one direction (labeling is propagated backwards but not forwards through time) and because only some 
operations are supported (additions but not deletions), users did not have a strong understanding or confidence in this 
feature. Finally, though the automatic CV detections (visualized as red squares) were deemed helpful in drawing 
attention to curb ramps, participants felt that it was too often incorrect and thus distracting (though one participant 
enjoyed “outperforming” the AI).  

5 Conclusion and Future Work 
In this demo paper, we introduced three novel crowd+AI tools aimed at rapidly labeling and tracking changes in 
sidewalk accessibility features over time. In addition to addressing results from our usability study, we aim to support 
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richer qualitative labels about how curb ramps are changing (e.g., tactile strips, flares, steepness) and other 
accessibility-related labels for crosswalks [2], accessible pedestrian signals [10], and street/sidewalk surfaces [20]. We 
also plan to conduct a larger-scale deployment study to further assess our tools and progress towards public 
deployment, like Project Sidewalk [20], for tracking changes in urban accessibility infrastructure across cities and 
creating open “change tracking” datasets. 
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