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Abstract—Skin-based biometrics rely on the distinctiveness of 

skin patterns across individuals for identification. In this paper, we 
investigate whether small image patches of the skin can be localized 
on a user’s body, determining not “who?” but instead “where?” 
Applying techniques from biometrics and computer vision, we 
introduce a hierarchical classifier that estimates a location from the 
image texture and refines the estimate with keypoint matching and 
geometric verification. To evaluate our approach, we collected 
10,198 close-up images of 17 hand and wrist locations across 30 
participants. Within-person algorithmic experiments demonstrate 
that an individual’s own skin features can be used to localize their 
skin surface image patches with an F1 score of 96.5%. As secondary 
analyses, we assess the effects of training set size and between-person 
classification. We close with a discussion of the strengths and 
limitations of our approach and evaluation methods as well as 
implications for future applications using a wearable camera to 
support touch-based, location-specific taps and gestures on the 
surface of the skin. 

Keywords— skin texture classification; biometrics and computer 
vision applications; on-body input 

I. INTRODUCTION 
Previous work in skin classification has largely been in the 

context of biometrics—that is, determining the uniqueness of a 
user’s skin patterns for identification purposes (e.g., [1–7]). In 
this paper, rather than identifying who an image represents, we 
seek to identify where an image is located on a single user's 
body. More specifically, we investigate to what extent are 
surface image patches of the hand and wrist localizable? 

Being able to determine the location of a small patch of skin 
could enable a wearable camera to support a range of on-body 
interactions, an emerging paradigm in human-computer 
interaction (HCI) where users tap or gesture on their own body 
to control a computing device (e.g., [8–16]). One advantage is 
that this type of input is always available, allowing the user to, 
for example, quickly tap or swipe on their palm to answer a 
phone call or listen to new emails (Figure 1a). On-body 
interaction is also useful when visual attention is limited because 
the skin’s tactile perception allows for more accurate input than 
is possible with a touchscreen [17, 18]. 

Sensing these on-body taps and gestures, however, is a 
challenging problem. Researchers have investigated a variety of 
wearable cameras (e.g., [11, 19]) and other sensors (e.g., bio-
acoustics [8], ultrasonic rangefinders [9]). While promising, 

these approaches are limited by the placement and range of the 
sensor [14, 19], suffer from occlusion [19] or precision [8] 
problems, or cover the user’s skin [15], reducing tactile 
sensitivity. Instead, we envision using close-up images from a 
small finger-mounted camera (e.g., [20, 21]) to sense and 
localize user input (Figure 1b). By instrumenting the gesturing 
finger with a camera, our approach extends the user’s interaction 
space to anything within reach and can support fairly precise 
location-based input.  

Localizing small (~1–2 cm) image patches within the larger 
skin surface is similar to partial finger and palm print recognition 
in forensic applications; however, high-resolution, high-contrast 
images of ridge impressions are typically needed to reliably 
extract distinctive point and line features. In contrast, cameras 
small enough to be mounted on the finger (Figure 1b) are low 
resolution and low contrast, making it difficult to detect minute 
ridge features. Several recent biometric systems recognize finger 
and palm prints using lower-quality images [2, 5–7, 22–27]. 
Unfortunately, these approaches are frequently designed to align 
and process the finger or palm image as a whole, and cannot 
reliably recognize a small portion of the print. To our 
knowledge, no work has attempted to recognize or localize a 
small skin patch from live camera images, which we do here. 

To ultimately support on-body localization using a finger-
mounted camera, we investigate the classifiability of 17 
locations on the front and back of the palm, fingers, wrist, nails, 
and knuckles. We introduce a hierarchical texture classification 
approach to first estimate the approximate touch location on the 
body given close-up images of the skin surface and then refine 
the location estimate using keypoint matching and geometric 
verification. To evaluate our approach, we collected a skin-
surface image dataset consisting of 30 individuals and the 17 
hand and wrist locations (10,198 total images). 

This work was supported by the Office of the Assistant Secretary of 
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Figure 1. (a) Conceptual visualization of on-hand input to control a mobile 
phone, as in [17]. (b) Cameras developed for minimally invasive surgeries 
are small enough to mount on the finger. Shown: AWAIBA NanEye 
(1×1mm2, 250×250px resolution) used in [20, 21]. 
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When testing and training on an individual’s own skin data 
(within-person experiments), our results show that skin patches 
are classifiable by location under controlled conditions with 
96.6% recall and 96.4% precision, suggesting that finger-
mounted cameras may be feasible for sensing on-body 
interactions.  

In summary, the contributions of this paper include: (i) a 
robust algorithmic pipeline for recognizing several different 
locations on the hand from small patches of skin; (ii) 
classification results for a dataset consisting of 30 individuals, 
achieving accuracy above 96% on average for within-person 
experiments; and (iii) analysis of hand distinctiveness and 
similarities among users, which may impact accuracy and 
scalability (e.g., between-person training feasibility). 

II. RELATED WORK 
Our work applies and extends research in biometrics and on-

body interaction, which we describe below. 

A. Finger and Palm Biometrics 
Work in biometrics has demonstrated that the skin of the 

hand—specifically, the palm and fingers—contains a large 
number of highly distinctive visual features that can be used to 
identify individuals [1, 2]. As noted in the Introduction, we 
borrow and extend biometrics algorithms, including those for 
partial fingerprint and palmprint recognition used in forensics 
[3, 4] as well as techniques that use relatively low resolution and 
low contrast webcam and mobile phone camera images for 
person identification and verification [2, 5–7]. 

Fingerprint and palmprint recognition requires matching an 
image against a set of stored templates, either directly using the 
image intensities [22], using texture representations [23, 24], or 
using minutiae and other point features [3, 4, 6, 27, 28]. A direct 
match requires precise alignment of the finger or palm as a 
whole, which is infeasible for the close-up, partial images used 
in our work. However, we can support partial matching by 
applying some of the same methods for preprocessing, 
representing texture, and extracting point features. 

To preprocess the images, most approaches apply some filter 
(e.g., Gabor filters [23]) that enhances the skin’s ridges and 
principal lines. We use a method inspired by Huang et al.’s 
palmprint verification work [29]. To represent texture, Local 
Binary Pattern (LBP) histograms are a common choice in 
biometrics [24, 30]. While we explored other texture-based 
methods, such as Gabor histograms [25] and wavelet principal 
components [26], we found that they offered negligible 
improvements over LBP despite their increased computational 
complexity. To detect point features, some systems use Harris 
corners [27] or scale-invariant feature transform (SIFT) key 
points [7, 27]; however, the comparisons between feature 
descriptors are challenging due to the repetitive nature of finger 
and palm images. Thus, we instead extract custom features that 
are based upon Gabor filter response, inspired by [29]. 

B. On-Body Interaction 
A wide variety of wearable sensors have been used to 

support touch-based input on the user’s own body, from arm-
worn bio-acoustic sensors [8] and ultrasonic rangefinders [9] to 
infrared reflectance sensors [14] and touch-sensitive skin 

overlays [15]; these approaches, however, are limited by 
occlusion and precision problems, sensor placement and range 
issues, and/or impeding the user’s sense of touch—as noted in 
the Introduction. Most relevant are approaches that use body-
mounted cameras—often depth and/or infrared cameras worn on 
the chest, shoulder, or head [11–13, 16, 19, 31]. These devices 
detect on-body gestures from camera images using low-level 
computer vision techniques such as histogram [19] and motion-
based segmentation and tracking [31], and Support Vector 
Machine (SVM)-based classifiers [31]. For instance, Harrison et 
al.’s [11] OmniTouch enables touch-based interactions on a 
variety of surfaces via a shoulder-mounted depth camera for 
hand tracking and a pico-projector for visual feedback. While 
similar to using a finger-mounted camera, body-mounted 
camera hardware is subject to occlusion issues and limits the 
interaction space to the fixed camera’s field of view [19]. 

In contrast, we envision using a finger-mounted camera that 
can be freely pointed to interaction targets. Such cameras have 
been used by FingerReader [32] and HandSight [21, 33] for 
reading printed text, and by Magic Finger [20], which combines 
a high-speed optical mouse sensor to track finger movement and 
a slower but higher-resolution camera to capture detail for 
texture classification. We were particularly inspired by Magic 
Finger, which achieved high accuracy (99%) in classifying a set 
of 22 textures that included table surfaces, white paper, clothing, 
and two body locations (hand, thumb). The first stage of our 
surface classification approach is similar to theirs, using an LBP 
texture representation and an SVM classifier. 

III. TOUCH LOCALIZATION PIPELINE 
Robust localization of close-up skin images from a finger-

mounted camera is challenging due to the limited field of view 
(~1–2 cm) and relatively low contrast of the ridges and other 
skin surface features. To estimate the user’s touch location from 
close-up images, we developed a hierarchical classifier with four 
stages: (i) preprocessing, (ii) coarse-grained classification, (iii) 
fine-grained classification, (iv) geometric verification and 
refinement. The coarse-grained stage classifies an input image 
into one of five regions: palm, fingers, nail, knuckle, and other 
(wrist and back of hand). The fine-grained stage further 
classifies the image into a discrete location within that region 
(17 locations in all; see Figures 2 and 5). These locations were 
selected because previous work has shown that users can 
reliably locate them with high accuracy even without sight [18]. 
While our four-stage pipeline integrates multiple known 
approaches in fingerprint and palmprint enhancement, texture 
classification, and 2D keypoint matching, our primary 
innovation is in their novel combination and application towards 
localization rather than identification. 

Stage 1: Preprocessing. Images are first preprocessed to 
remove noise and emphasize ridge features. We apply an 
efficient median filter [34] to reduce the effect of dirt and other 
camera noise while preserving the edge information necessary 
for processing finger and palm prints (Figure 2). 

To emphasize the ridgelines, we adapt a technique from 
Huang et al. [29]. However, while they use a modified version 
of the finite radon transform to emphasize the principal lines and 
creases of the palm, these features are not as prominent in our 
images due to the narrow field of view. We instead use Gabor 



filters. We compute the Gabor energy image defined as the 
maximum response at each pixel from a set of Gabor filters with 
different orientations. Specifically, the energy at pixel location 
(x, y) is: 

 𝐸𝐸",$ = max
)

𝐺𝐺+ ∗ 𝐼𝐼",$ − 𝐼𝐼",$  (1) 

where 𝐼𝐼",$ is the gray-scale pixel value at (x, y) and 𝐼𝐼",$ is the 
local mean in a window around that location (estimated using a 
Gaussian smoothing function), 𝐺𝐺+ is a discrete Gabor filter with 
orientation 𝜃𝜃 , and * is the convolution operator. In our 
experiments, we use 18 uniformly distributed orientations, with 
a fixed scale and bandwidth that were chosen empirically based 
upon the average ridge frequency in our preliminary 
experiments with a separate set of pilot data. Example energy 
images are shown in Figure 2, 3, and 4. 

Stage 2: Coarse-Grained Classification. After 
preprocessing, we obtain a rough classification of the image’s 

location using the visual texture, which we represent using LBP 
histograms. We chose LBP because of its computational 
efficiency and natural invariance to illumination variations. To 
improve accuracy and achieve rotation invariance, we use only 
the uniform patterns alongside the variance of the neighboring 
values as suggested in [35]. Our implementation uses a 2D 
histogram with 14 uniform pattern bins and 12 variance bins 
(𝐿𝐿𝐿𝐿𝑃𝑃34,45674 and 𝑉𝑉𝑉𝑉𝑅𝑅34,4, as defined in [35]), computed at 3 scales. 
These parameters were selected because they provided a balance 
between classification accuracy and computational efficiency on 
our pilot data. The histograms for each scale are flattened and 
concatenated together to produce a 672-element feature vector, 
which is then normalized. To classify the LBP histograms into 
coarse-grained body regions, we train a support vector machine 
(SVM)—commonly used in texture classification (e.g., [20, 22, 
36]).  

Stage 3: Fine-Grained Classification. We compare the 
LBP histogram using a template matching approach against only 
the training templates from the coarse-grained region identified 
in Stage 2. This hierarchical approach reduces the number of 
possible match locations and enables us to prioritize different 
features for each region individually (e.g., for the palm we can 
automatically weight the palmprint texture features that best 
discriminate the five different palm locations). For template 
comparisons, we use the 𝜒𝜒4 distance metric, which is known to 
perform well with LBP histograms (e.g., [37]). Stage 3 produces 
a sorted list of templates, with the lowest distance representing 
the most likely match. 

Stage 4: Geometric Verification and Refinement. Stage 4 
ensures the validity of the texture match and refines the precise 
touch location using a set of keypoint matching and geometric 

 
Figure 3. The four stages of our localization algorithm, as applied to an example image from the left side of the palm. First, the image is preprocessed to 
remove surface artifacts and camera noise before calculating the Gabor energy to emphasize ridge and crease lines. Second, the image is classified into 
one of five coarse-grained locations (in this case, the palm) using a 2D texture histogram of LBP and pixel variances. Third, the image’s texture is compared 
against the templates from the predicted coarse-grained class, which are sorted by their 𝜒𝜒4 histogram distances to prioritize matching for the next stage. 
Finally, the image is compared geometrically against images from the predicted coarse-grained class, using a set of custom Gabor keypoints and descriptors. 
The image is compared against individual templates starting with the most likely match (as predicted in Stage 3), proceeding in order until a template with 
sufficient geometrically consistent keypoint matches is found. If a geometrically consistent match is found, then the fine-grained location can be estimated 
with a high degree of certainty (in this case, the left side of the palm); otherwise, the algorithm falls back upon the closest texture match from Stage 3. 

 
(a) Without noise removal (b) With noise removal 

Figure 2. Stage 1 preprocessing first removes dirt and other noise before 
emphasizing ridge features using the energy of a set of Gabor filters with 
different orientations. Shown: an example image from the left side of the 
palm, scaled and cropped to demonstrate the effect that surface artifacts 
can have on the Gabor energy image. 



verification steps. We investigated SIFT keypoints [6, 7, 27], 
Harris corners [27], and fingerprint minutiae [3, 4, 28], but found 
them too unreliable in preliminary tests. Instead, we use 
keypoints with a high Gabor filter response at two or more 
orientations, which tend to lie at the intersections of ridgelines 
or creases. The Gabor energy values in the 16×16px 
neighborhood surrounding the keypoint serve as a reliable 
descriptor. To achieve rotation invariance, we generate multiple 
descriptors at each keypoint location, rotating the neighborhood 
for each using the orientation of the filters with locally 
maximum response strength. We keep a list of keypoints for 
each training image.  

These image patches, however, are frequently visually 
similar (e.g., Figure 4a), leading to a high percentage of 
mismatches between the keypoints (Figure 4b). We address this 
issue using a series of geometric verification steps. First, we 
filter the matches for orientation consistency, eliminating 
matches that do not agree with the majority vote for the relative 
rotation between images (i.e., any more than 20° from the 
average rotation across all matches). Second, we compute a 
homography matrix using random sample consensus 
(RANSAC), identifying inliers and ensuring that there are 
sufficient geometrically consistent feature matches (i.e., more 
than the minimum necessary to define a homography; in our 
experiments, we required 16 consistent matches). Although the 
palm and fingers are not rigid planar surfaces, in the close-up 
images we gathered they appear nearly so; we compensate for 
any irregularities by allowing a greater than usual inlier distance 
of 10 pixels. Third, we verify that the homography matrix is well 
behaved using the following constraints, which ensure that the 
match preserves orientation and does not have extreme 
variations in scale or perspective: 

 

1. 𝐻𝐻33𝐻𝐻44 − 𝐻𝐻43𝐻𝐻34 > >
? 

2. 3
4
< 𝐻𝐻334 + 𝐻𝐻434 < 2 

3. 3
4
< 𝐻𝐻344 + 𝐻𝐻444 < 2 

4. 𝐻𝐻C34 + 𝐻𝐻C44 <
3

3DDD
 

(2) 

These constraints were selected empirically to eliminate most 
degenerate cases that could lead to false-positive matches. 
Fourth and finally, to avoid further degenerate cases, we ensure 
that the inlier features are not collinear and that they have 
sufficient spread. We do this by calculating the standard 
deviation along the two principal directions computed using 
principal component analysis; if 𝜎𝜎3 < 25  or 𝜎𝜎3 𝜎𝜎4 > 4,	we 

declare the match invalid (these numbers were also selected 
empirically and validated on a separate set of pilot data). If a 
template match is declared invalid, we proceed to the next best 
texture match, stopping once we find one that passes all 
conditions. If a valid match is not found, then we fall back upon 
the best Stage 3 texture match.  

The output of our hierarchical algorithm is an estimated 
classification of a query image into one of 17 locations, along 
with a confidence score based upon the texture similarity and the 
number of inliers for the best template match. From the 
computed homography matrix, we also obtain a more precise 
location estimate relative to the matched training templates, 
potentially enabling finer localization for future explorations. 

IV. DATA COLLECTION AND DATASET 
To evaluate our approach, we created an image dataset 

collected from 30 volunteers (23 female) recruited via campus 
email lists. The participants were on average 30.6 years old 

Participant Demographics 
Gender 23 female, 7 male 

Age Mean = 30.6, SD = 11.5, Min = 18, Max = 59 
Race Black, Afro-Caribbean, or Afro-American 6 

 East Asian or Asian-American 5 
 Latino or Hispanic American 1 
 Non-Hispanic White or Euro-American 14 

 South Asian or Indian American 2 
 Other or Multiple 2 

Palm Size Mean = 98.3 mm, SD = 10.3 mm, Min = 79.7 mm, Max = 129.5 mm 

Table 1. Our dataset captures variations in gender, age, race, and palm size. 
Palm size was measured diagonally from the base of the thumb to base of 
the smallest finger while the fingers were spread and fully extended.  

 

  

 

 
Figure 5. Data collection setup: (a) the 17 close-up image locations on the 
left hand in 5 coarse-grained regions–coded with different colors; (b) the 
pen-based camera and physical constraints (one angled at 45° and one at 
90°) used for close-up image capture. (c) representative images from our 
dataset for each of the 17 locations, selected across 12 participants. 

a. 

c. 

b. 

Source Image Matched Image Source Image Matched Image 

  

  
Figure 4. Keypoints in the Gabor energy images frequently appear 
visually similar (a), leading to a high percentage of mismatches (b). We 
filter outliers using a series of verification steps to ensure geometric 
consistency (c and d). 

a b 

c d 



(SD=11.5, range=18–59), and represented a variety of skin 
tones and palm sizes (Table 1). For each participant, we 
collected close-up images of 17 locations (Figure 5) using a 
small 0.3-megapixel micro-lens camera in the shape of a pen.  

The micro-lens camera is self-illuminated with a manually 
adjustable focal length, enabling us to capture clean 640×640px 
images of the hand from as close as 1cm. We controlled for 
distance and perspective using two 3D-printed camera 
attachments that place the camera approximately 2.5cm from the 
surface of the hand, at either a 90° or 45° angle (Figure 5b). 
Compared to a finger-mounted camera, this form factor enabled 
us to more easily control for variables such as distance, 
perspective, focus, and lighting, while still capturing images that 
are representative of our target domain. Ultimately we expect to 
use a smaller camera similar to Figure 1b.  

Participants used the camera to point to 17 locations on the 
hand and palm, with 10 trials for each location and two 
perspectives (45° and 90°) resulting in 340 images per person. 
Rather than point 10 times in a row to the same location, the 
order of trials was randomized to provide natural variation in 
translation, rotation, and pressure (which impacts scale and 
focus). In total, we have 10,198 close-up micro-lens images 
across the 30 participants (one participant skipped two trials). 
While we would like to release this dataset publicly, we cannot 
do so without risking the privacy of our participants. 

V. EXPERIMENTS AND RESULTS 
We first describe results related to coarse- and fine-grained 

hand classification performance before presenting secondary 
analyses related to the effect of training sample size on 
performance and between-person classification. Our analyses 
report standard measures including precision, recall, and F1 
scores. These metrics are more informative than accuracy due to 
the uneven number of training examples per class our hierarchy 
defines.  

A. Within-person Classification 
To evaluate the overall location-level classifiability of the 

hand, we conducted a within-person classification experiment. 
We used an n-fold, leave-one-out cross-validation approach. 
Our results are the average across all 20 folds for each of the 30 

participants. We first present aggregate results before examining 
performance by location and by participant. 

At the coarse-grained level (Stage 2), the average precision 
is 99.1% (SD=0.9%) and average recall is 99.2% (SD=0.8%). At 
the fine-grained level (Stage 3), the average precision is 88.2% 
(SD=4.4%) and recall is 88.0% (SD=4.5%). After performing 
geometric validation and refinement (Stage 4), fine-grained 
classification increases to 96.6% precision (SD=2.2%) and 
96.4% recall (SD=2.3%). The high precision and recall values 
demonstrate the feasibility of using close-up images to classify 
locations on the hand and wrist. Stage 2 precision and recall are 
very high (above 99%), which is important because errors in 
estimating the coarse-grained region will propagate to the next 
stage (a limitation of our hierarchical approach). Across all 
stages, we observed classification errors that were caused 
primarily by similarities between the locations’ visual textures, 
poor image quality, and insufficient overlap between the training 
and testing images, although the high accuracies meant that there 
was not enough data for statistical analysis of the errors.  

To examine the impact of different hand/wrist locations on 
performance, we created confusion matrices for Stage 2 (coarse-
grained) and Stage 4 (fine-grained) classifications. See Tables 2 
and 3 respectively. The locations with the lowest F1 score were 
those on the back of hand (M=92.3%; SD=10.1%) and wrist 
(M=91.8%; SD=8.4%), which appear visually similar (Figure 
6). This was true to a lesser extent across all coarse-grained 
regions, with the textures of different locations within each 
region appearing similar. While Stage 4 geometric validation 
reduced misclassifications, it was not always successful. For 
example, in some cases, an image for a participant did not 
sufficiently overlap any other image in the dataset, preventing 

Stage 4: Fine-grained Classification Confusion Matrix 
 Palm Fingers Nails Knuckles Other 

C U D L R 1st 2nd 3rd 4th 5th 1st 2nd 1st 2nd BH OW IW 
Palm Center (C) 98.3%     0.2%  0.2%  0.2%     0.2% 0.5% 0.5% 

Palm Up (U) 0.2% 98.5%  0.2% 0.2%  0.2%   0.3%      0.2% 0.3% 
Palm Down (D) 0.3% 1.2% 95.7% 0.2% 1.7% 0.3% 0.2%      0.2%   0.2% 0.2% 

Palm Left (L) 0.3% 0.3% 0.2% 98.7% 0.3% 0.3%           0.7% 
Palm Right (R) 0.7% 0.5% 0.3% 0.5% 97.5% 0.2% 0.2%   0.2%        

1st Finger  0.5% 0.2% 0.2% 0.7% 96.3% 0.3% 0.5% 0.5% 0.7%     0.2%   
2nd Finger  0.3%   0.2% 0.3% 95.8% 1.7% 0.5% 1.2%        
3rd Finger   0.3%   0.2% 1.3% 95.4% 2.2% 0.7%        
4th Finger   0.2%    0.3% 1.8% 95.3% 2.3%        
5th Finger  0.2%  0.2%   0.3% 0.5% 1.5% 97.0% 0.3%       

1st Nail    0.2%       98.2% 1.7%      
2nd Nail   02%      0.2%  0.5% 99.0%  0.2%    

1st Knuckle           0.2%  97.3% 1.2% 0.2% 0.2% 1.0% 
2nd Knuckle            0.2% 0.8% 98.8%  0.2%  

Back of Hand (BH)    0.2%         0.5% 0.2% 92.2% 4.7% 2.3% 
Outer Wrist (OW) 0.2%            0.2%  6.0% 90.2% 3.5% 

Inner Wrist (IW) 0.7% 0.7% 0.2% 0.2% 0.3%      0.2%  0.7% 0.2% 0.8% 0.5% 96.2% 

Table 3: Classification percentages for classes at the fine-grained level (Stage 4 output), averaged across 20 trials and 30 participants. Each cell 
indicates the percentage of images assigned to a predicted class (column) for each actual class (row).  

Stage 2: Coarse-grained Classification Confusion Matrix 
 Palm Finger Nail Knuckle Other 

Palm 99.0% 0.5%   0.5% 
Finger 0.6% 99.3% 0.1%   

Nail 0.2% 0.1% 99.7% 0.1%  
Knuckle   0.2% 99.1% 0.7% 

Other 0.6%  0.1% 0.5% 98.8% 

Table 2: Classification percentages for classes at the coarse-grained level. 
Each cell indicates the percentage of images assigned to a predicted class 
(column) for each actual class (row). 



geometric keypoint matching (Figure 7). In these cases the 
algorithm fell back to the best Stage 3 texture match.  

To examine how performance varies across individuals, 
Figure 8a shows F1 scores broken down by participant. F1 scores 
ranged from 95.9% to 100.0% at the coarse-grained level (Stage 
2) and 86.5% to 99.7% at the fine-grained level (Stage 4). 
Participant 29 performed the worst, with a Stage 4 F1 score of 
86.5%—4.4 standard deviations below the mean. Based on a 
qualitative examination, we found decreased skin contrast with 
fewer distinctive finger and palm features, as well as significant 
variations in translation, rotation, and image focus for each 
location. In comparison, the top performing participants had 
high contrast skin textures, more consistent pressure (resulting 
in fewer variations in lighting and focus), and greater 
consistency in returning to the same touch location each trial.  

Our dataset captured some variations in age, skin tone, and 
hand size, although not in large enough numbers to confidently 
determine the effect those factors may have on classification 
performance (see Table 1). We found no significant correlations 
across our 30 participants with any of these variables; however 
further work with a larger, more diverse participant pool is 
needed. 

B. Effect of Training Set Size on Performance 
To explore performance as a function of training set size, we 

tested our algorithms again using n-fold cross-validation but 
this time varying the number of training samples from m = 1 to 
19. Specifically, we randomly selected from the 20 images per 
class available for each participant, with one image set aside for 
testing. Figure 8b shows the average texture classification 
accuracy at the coarse-grained (Stage 2) and fine-grained (Stage 
3) levels when increasing the number of training examples. To 
reduce the effect of selecting the images randomly and obtain a 
more representative estimate, we averaged the results of 10 
randomized trials. Each point represents the average F1 score 
across all participants, locations, and trials when trained using 
m examples. Accuracy begins to level off above five training 
images per location, especially at the coarse-grained level 
(which approaches 100% accuracy). However, performance at 
both levels steadily improves as the number of training images 
is increased. We did not evaluate Stage 4 for this experiment as 
its performance depends largely upon the amount of spatial 
overlap between the training and testing images rather than the 
number of training samples.  

C. Between-person Classification 
To potentially bootstrap the training set and to identify 

similarities across individuals, we conducted a secondary 
classification experiment in which the training set and testing set 
consisted of images from different participants (i.e., between-
person experiments). More specifically, we employed n-fold 
cross-validation, where each fold trained on data from 29 
participants and tested on the remaining participant. We did not 
expect this approach to yield a high accuracy, especially at the 
fine-grained level since finger and palm prints can vary 
significantly person to person (which is the basis of biometric 
identification). However, we hoped to discover textural 
similarities across participants that could be used to boost future 
classifiers to either improve accuracy or reduce the amount of 
per user training. 

 
Figure 6: Classification errors were caused primarily by similarities 
between the locations’ visual textures and poor image quality. Each set of 
images shows, in order, two examples (from different participants) of an 
incorrectly classified test image along with a training image from the 
predicted location. 

 
Figure 7: Classification errors for several participants were also caused by 
inconsistent touch locations. Shown are two examples (from two different 
participants) where the locations were far enough apart to appear as 
entirely unrelated images. 

  
Figure 8: (a) Distribution of F1 scores by participant, with outlier P29 
marked by the blue dot; (b) Effect of the number of training examples on 
mean texture classification F1 score at coarse-grained (Stage 2, blue) and 
fine-grained (Stage 3, orange) levels. 
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As expected, the between-person classification results are 
lower than the within-person results. At the coarse-grained level, 
our classification algorithms achieve an average precision of 
72.6% (SD=12.9%) and recall of 70.8% (SD=12.3%). Still, these 
results are considerably higher than chance for five classes 
(20%) or majority-vote for the palm class (29.4%). See Table 4 
for a confusion matrix. Average precision at the fine-grained 
level is 27.1% (SD=7.5%) and recall of 26.1% (SD=5.8%), 
which are also well above chance for 17 classes (5.9%). 
Although these accuracies are clearly too low to support a 
reliable user interface without an individual training procedure, 
they may provide enough classification information to allow for 
bootstrapping. 

VI. DISCUSSION 
Our controlled experiments explored the distinguishability 

of small image patches on the surface of the hand and wrist for 
localization purposes. In our within-person experiments we 
were able to achieve an average F1 score above 99% at the 
coarse-grained level (Stage 2) and above 96% at the fine-grained 
level (Stage 4), which suggests that skin-surface image patches 
can be classified and localized on the body with high levels of 
accuracy. While an end-to-end deep learning approach may be 
more elegant, our more heuristic approach requires substantially 
less training data, and our performance results suggest that an 
on-body input system applying our algorithms is feasible. Here, 
we reflect on the implications of our findings as well as 
challenges for implementing a real-time system. 

A. Expanding On-Body Input 
 While we only evaluated locations on the hand and wrist, our 
finger-mounted approach should support a range of input 
locations within the user’s reach, including on-body and off-
body surfaces (e.g., tabletops). This is in contrast to most 
previous on-body input approaches that are more limited by their 
fixed sensor placements and range. Although recognition 
accuracy may drop as the number of locations increases (e.g., 
thigh, forearm), we expect to boost performance through 
improvements to our hierarchical approach. Performance was 
particularly high at the first level of the hierarchy, with an F1 
score above 99%. Thus, for each region we could apply different 
preprocessing and matching approaches at the second level that 
are tuned specifically to distinguish the fine-grained locations 
within that region. For example, we could extract knuckle-
specific features (e.g., [2]) to distinguish knuckle locations, 
which may require completely different algorithms than the 
palm locations. Similarly, it will be important to explore the 
feasibility of extending the localization hierarchy further, for 
regions that can support an even finer level of granularity 
beyond the locations studied (e.g., palm, fingers); such 

granularity could enable highly precise on-body interactions 
(e.g., sliding your finger along your palm to trace a map route). 

B. Training a Camera-Based On-Body Localization System 
The procedure for training a new user may impact both 

algorithmic performance and user perceptions toward the 
system. As shown in Figure 7b, classification performance 
improves with the number of training examples, but begins to 
level off after five examples per class. However, it may be 
possible to boost accuracy while simultaneously reducing the 
number of training examples that are required of a new user. The 
images in our dataset relied on natural variations that were 
introduced through randomization during data collection. To 
potentially improve performance, the training interface could 
prompt the user to vary rotations, poses, and perspectives–
similar to Apple’s iPhone training procedure for their fingerprint 
sensor. In addition, as our preliminary experiments indicate, it 
may be possible to bootstrap the system using between-person 
data and reduce the amount of training required for a new user. 
This approach would work especially well in our first stage of 
classification to recognize surface classes that appear similar 
across many users (e.g., skin, knuckles, clothing).  

C. Limitations and Future Work 
 Our experiments were conducted under controlled 

conditions, but a real-time system would likely need to deal with 
greater variations in image quality. Although we randomized 
trial order to introduce natural variation in translation, rotation, 
and pressure, we carefully controlled for other variables such as 
distance, lighting, and perspective. A finger-worn camera will 
likely constrain this complexity, potentially mitigating these 
concerns. For example, distance will remain relatively constant 
during touch-based interactions since the camera can be 
positioned at a fixed location on the finger and lighting can be 
controlled via a self-illuminated camera. While perspective may 
vary considerably, our results show that our algorithm functions 
well for both 90-degree and 45-degree perspectives. Further 
work is necessary to explore variations under less controlled 
conditions, including potential changes over time (e.g., due to 
differences in humidity/dryness), as well as other variations in 
skin surface textures and features due to age, skin tone, and hand 
size. The above mitigating factors suggest that our approach 
should still be applicable. 

Our work focused solely on RGB camera-based sensing 
using static images. Future research should explore other 
imaging and non-imaging sensors as well as combining video 
and multiple sensor streams (sensor fusion). For example, 
hyperspectral imaging would expose veins and other sub-dermal 
features that could be used for localization as well as improve 
the contrast of surface features across a wider range of skin tones 
(e.g., [38]). Depth sensors could provide 3D geometry of the 
hand and ridges, potentially improving robustness to variations 
in perspective and allowing us to more reliably extract finger and 
palm print features to use for localization (e.g., [39]). Finally, 
non-imaging sensors (e.g., infrared reflectance [14] or inertial 
motion [40]) could provide complementary information to help 
resolve visual ambiguities and better integrate localization with 
gesture recognition. 

Between-person Coarse-grained Classification Confusion Matrix 
 Palm Finger Nail Knuckle Other 

Palm 55.2% 16.8% 7.8% 4.0% 38.8% 
Finger 8.1% 85.5% 10.4% 2.1% 2.3% 

Nail 0.2% 3.4% 85.3% 4.4% 0.9% 
Knuckle 1.2% 0.2% 1.3% 67.8% 18.2% 

Other 12.4% 4.1% 0.1% 18.2% 60.3% 

Table 4: Between-person classification percentages for classes at the 
coarse-grained level. Each cell indicates the percentage of images assigned 
to a predicted class (column) for each actual class (row). 



VII. CONCLUSION 
This paper introduces an algorithmic pipeline for 

recognizing low-resolution, close-up images of several different 
locations on the hand/wrist with an average F1 score of 96.5% 
for within-person skin patch classification. While future work 
will need to address potential implementation challenges with a 
real-time system, our results suggest that a finger-mounted 
computer vision approach to support location-based on-body 
interaction should be feasible and that the system training 
process may be able to be bootstrapped using a dataset of hand 
images collected from multiple individuals. 

REFERENCES 
[1] A. Meraoumia, S. Chitroub, and A. Bouridane, “Fusion of Finger-

Knuckle-Print and Palmprint for an Efficient Multi-Biometric System of 
Person Recognition,” in Proc. of ICC ’11, 2011, pp. 1–5. 

[2] M. Choraś and R. Kozik, “Contactless palmprint and knuckle biometrics 
for mobile devices,” Pattern Anal. Appl., vol. 15, no. 1, pp. 73–85, Feb. 
2012. 

[3] A. K. Jain and J. Feng, “Latent Palmprint Matching,” IEEE Trans. Pattern 
Anal. Mach. Intell., vol. 31, no. 6, pp. 1032–1047, Jun. 2009. 

[4] Eryun Liu, A. K. Jain, and Jie Tian, “A Coarse to Fine Minutiae-Based 
Latent Palmprint Matching,” IEEE Trans. Pattern Anal. Mach. Intell., 
vol. 35, no. 10, pp. 2307–2322, Oct. 2013. 

[5] M. O. Derawi, B. Yang, and C. Busch, “Fingerprint Recognition with 
Embedded Cameras on Mobile Phones,” in Security and Privacy in 
Mobile Info. and Com. Sys., no. Jan 2012, Springer, 2012, pp. 136–147. 

[6] A. Morales, M. A. Ferrer, and A. Kumar, “Improved palmprint 
authentication using contactless imaging,” in IEEE Conf. on Biometrics: 
Theory, Applications and Systems (BTAS), 2010, pp. 1–6. 

[7] X. Wu, Q. Zhao, and W. Bu, “A SIFT-based contactless palmprint 
verification approach using iterative RANSAC and local palmprint 
descriptors,” Pattern Rec., vol. 47, no. 10, pp. 3314–3326, Oct. 2014. 

[8] C. Harrison, D. Tan, and D. Morris, “Skinput: Appropriating the Body As 
an Input Surface,” in Proceedings of CHI ’10, 2010, pp. 453–462. 

[9] R.-H. Liang, S.-Y. Lin, C.-H. Su, K.-Y. Cheng, B.-Y. Chen, and D.-N. 
Yang, “SonarWatch: Appropriating the Forearm as a Slider Bar,” in 
SIGGRAPH Asia 2011 Emerging Technologies, 2011, p. 5. 

[10] N. Dezfuli, M. Khalilbeigi, J. Huber, F. Müller, and M. Mühlhäuser, 
“PalmRC: Imaginary Palm-Based Remote Control for Eyes-free 
Television Interaction,” in Proc. of EuroITV ’12, 2012, p. 27. 

[11] C. Harrison and A. D. Wilson, “OmniTouch: wearable multitouch 
interaction everywhere,” in Proc. of UIST ’11, 2011, pp. 441–450. 

[12] E. Tamaki, T. Miyaki, and J. Rekimoto, “Brainy Hand: an earworn hand 
gesture interaction device,” in Extended Abstracts of ACM CHI 2009, 
2009, pp. 4255–4260. 

[13] P. Mistry and P. Maes, “SixthSense: A wearable gestural interface,” in 
Proc. of ACM SIGGRAPH Asia, 2009, p. Article No. 11. 

[14] M. Ogata, Y. Sugiura, Y. Makino, M. Inami, and M. Imai, “SenSkin: 
Adapting Skin as a Soft Interface,” in Proc. UIST ’13, 2013, pp. 539–544. 

[15] M. Weigel, T. Lu, G. Bailly, A. Oulasvirta, C. Majidi, and J. Steimle, 
“iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch 
Sensors for Mobile Computing,” in Proc. CHI’15, 2015, pp. 2991–3000. 

[16] U. Oh and L. Findlater, “Design of and subjective response to on-body 
input for people with visual impairments,” in Proc. of ASSETS ’14, 2014, 
pp. 115–122. 

[17] S. G. Gustafson, B. Rabe, and P. M. Baudisch, “Understanding Palm-
based Imaginary Interfaces: The Role of Visual and Tactile Cues when 
Browsing,” in Proc. of CHI ’13, 2013, pp. 889–898. 

[18] U. Oh and L. Findlater, “A Performance Comparison of On-Hand versus 
On-Phone Non-Visual Input by Blind and Sighted Users,” ACM Trans. 
Access. Comput., vol. 7, no. 4, p. 14, 2015. 

[19] S. Gustafson, C. Holz, and P. Baudisch, “Imaginary Phone: Learning 
Imaginary Interfaces by Transferring Spatial Memory from a Familiar 
Device,” in Proc. of UIST '11, 2011, pp. 283–292. 

[20] X.-D. Yang, T. Grossman, D. Wigdor, and G. Fitzmaurice, “Magic finger: 
always-available input through finger instrumentation,” in Proc. of UIST 
’12, 2012, pp. 147–156. 

[21] L. Stearns, R. Du, U. Oh, Y. Wang, R. Chellappa, L. Findlater, and J. E. 
Froehlich, “The Design and Preliminary Evaluation of a Finger-Mounted 
Camera and Feedback System to Enable Reading of Printed Text for the 
Blind,” Proc. ECCV '14, Workshop on Assistive Computer Vision and 
Robotics, 2014. 

[22] J. Doublet, M. Revenu, and O. Lepetit, “Robust GrayScale Distribution 
Estimation for Contactless Palmprint Recognition,” in IEEE Conference 
on Biometrics: Theory, Applications, and Systems 2007, 2007, pp. 1–6. 

[23] V. Kanhangad, A. Kumar, and D. Zhang, “A Unified Framework for 
Contactless Hand Verification,” IEEE Trans. Inf. Forensics Secur., vol. 
6, no. 3, pp. 1014–1027, Sep. 2011. 

[24] G. K. Ong Michael, T. Connie, and A. B. Jin Teoh, “Touch-less palm print 
biometrics: Novel design and implementation,” Image Vis. Comput., vol. 
26, no. 12, pp. 1551–1560, 2008. 

[25] Wai Kin Kong and D. Zhang, “Palmprint texture analysis based on low-
resolution images for personal authentication,” in Proc. Pattern 
Recognition ’02, 2002, vol. 3, pp. 807–810. 

[26] M. Ekinci and M. Aykut, “Palmprint Recognition by Applying Wavelet-
Based Kernel PCA,” Comput. Sci. Technol., vol. 23, no. 107, pp. 851–
861, 2008. 

[27] A. S. Parihar, A. Kumar, O. P. Verma, A. Gupta, P. Mukherjee, and D. 
Vatsa, “Point based features for contact-less palmprint images,” in 2013 
IEEE International Conference on Technologies for Homeland Security 
(HST), 2013, pp. 165–170. 

[28] M. Laadjel, A. Bouridane, F. Kurugollu, O. Nibouche, and W. Yan, 
“Partial Palmprint Matching Using Invariant Local Minutiae 
Descriptors,” in Transactions on Data Hiding and Multimedia Security, 
2010, pp. 1–17. 

[29] D.-S. Huang, W. Jia, and D. Zhang, “Palmprint verification based on 
principal lines,” Patt. Recog., vol. 41, no. 4, pp. 1316–1328, Apr. 2008. 

[30] L. Nanni and A. Lumini, “Local binary patterns for a hybrid fingerprint 
matcher,” Patt. Recog., vol. 41, no. 11, pp. 3461–3466, Nov. 2008. 

[31] Harrison, S. Ramamurthy, and Hudson, “On-body interaction: armed and 
dangerous,” Proc. TEI ’12, pp. 69–76, 2012. 

[32] R. Shilkrot, J. Huber, M. E. Wong, P. Maes, and S. Nanayakkara, 
“FingerReader: a wearable device to explore printed text on the go,” in 
Proc. of CHI ’15, 2015, pp. 2363–2372. 

[33] L. Findlater, L. Stearns, R. Du, U. Oh, D. Ross, R. Chellappa, and J. E. 
Froehlich, “Supporting Everyday Activities for Persons with Visual 
Impairments Through Computer Vision-Augmented Touch,” in Proc. of 
ASSETS '15, 2015, pp. 383–384. 

[34] K. Kanagalakshmi and E. Chandra, “Performance evaluation of filters in 
noise removal of fingerprint image,” in 2011 3rd International Conf. on 
Electronics Computer Technology, 2011, vol. 1, pp. 117–121. 

[35] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution Gray-scale 
and Rotation Invariant Texture Classification with Local Binary 
Patterns,” Pattern Anal. Mach. Intell. IEEE Trans., vol. 24, no. 7, pp. 971–
987, Jul. 2002. 

[36] A. Kong, D. Zhang, and M. Kamel, “A survey of palmprint recognition,” 
Pattern Recognition, vol. 42, no. 7, pp. 1408–1418, 2009. 

[37] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face Recognition with Local 
Binary Patterns,” in Proc. of ECCV '04, 2004, pp. 469–481. 

[38] M. Goel, S. N. Patel, E. Whitmire, A. Mariakakis, T. S. Saponas, N. Joshi, 
D. Morris, B. Guenter, M. Gavriliu, and G. Borriello, “HyperCam: 
Hyperspectral Imaging for Ubiquitous Computing Applications,” in Proc. 
of UbiComp ’15, 2015, pp. 145–156. 

[39] W. Li, D. Zhang, L. Zhang, G. Lu, and J. Yan, “3-D Palmprint 
Recognition With Joint Line and Orientation Features,” IEEE Trans. Syst. 
Man, Cybern. Part C, vol. 41, no. 2, pp. 274–279, Mar. 2011. 

[40] L. Jing, Y. Zhou, Z. Cheng, and T. Huang, “Magic ring: A finger-worn 
device for multiple appliances control using static finger gestures,” 
Sensors, vol. 12, no. 5, pp. 5775–5790, 2012. 


