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ABSTRACT
We presentHulaMove, a novel interaction technique that leverages
the movement of the waist as a new eyes-free and hands-free in-
put method for both the physical world and the virtual world. We
first conducted a user study (N=12) to understand users’ ability to
control their waist. We found that users could easily discriminate
eight shifting directions and two rotating orientations, and quickly
confirm actions by returning to the original position (quick return).
We developed a design space with eight gestures for waist inter-
action based on the results and implemented an IMU-based real-
time system. Using a hierarchical machine learning model, our sys-
tem could recognize waist gestures at an accuracy of 97.5%. Finally,
we conducted a second user study (N=12) for usability testing in
both real-world scenarios and virtual reality settings. Our usabil-
ity study indicated that HulaMove significantly reduced interac-
tion time by 41.8% compared to a touch screen method, and greatly
improved users’ sense of presence in the virtual world. This novel
technique provides an additional inputmethodwhen users’ eyes or
hands are busy, accelerates users’ daily operations, and augments
their immersive experience in the virtual world.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Interaction techniques; Ubiquitous and mobile comput-
ing systems and tools.
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1 INTRODUCTION
Modern ubiquitous interaction is increasingly being enriched by
hands-free and eyes-free input from different parts of the human
body, such as the face [19, 71], feet [47, 54] and mouth [9, 51]. In
this paper, we contribute to that literature by introducing the waist
as a novel interaction channel.

Although usually not used explicitly, core muscles are located
around the waist and are commonly involved in a wide range of
daily activities [41, 52]. Therefore, the movement of the waist can
reflect a wide range of daily routines. Researchers often employ
waist movement for full-body interaction [16, 39], activity recog-
nition [7, 20] and health monitoring [75], etc.Most of this previous
work leverages waist movement as a passive indicator, i.e., achiev-
ing interaction, recognition, or monitoring goals via observing the
waist movement that naturally happens during activities.

However, as the biggest joint of the human body, the waist can
also be easily controlled in an active way. This observation gives
rise to HulaMove, a novel technique that leverages the voluntary
movement of users’ waists as a new eyes-free and hands-free input
method, which can be useful in interacting in both the physical and
virtual worlds. In real-world scenarios, it can serve as a convenient
input channel in situations where a user’s hands or eyes (or both)
are busy. For example, users can easily answer a phone call when
carrying heavy bags with their hands, or navigate between recipe
pages in the kitchenwhere handsmay bewet or busy holding cook-
ing tools. In addition, in augmented and virtual reality (AR/VR)
settings, using the waist for interaction can establish a stronger
connection between a user’s physical body and the virtual world,
thus augmenting an immersive user experience.

Knowing how well users can control their waist movement is
fundamental for waist interaction design. We conducted a user
study (N=12) with awaist-controlled target acquisition task to eval-
uate users’ waist control ability. We focused on two types of waist
movement: 1) shifting,moving thewaist in a certain directionwhile
keeping the waist facing forward, and 2) rotating, spinning the
waist clockwise or counterclockwise around the body’s vertical
axis (see Figure 1). We compared the use of a different number
of directions (from 4 to 16 for shift, and from 2 to 8 for rotation)
and three confirmation techniques (Quick Return, Time Dwell and
Button Click). Our results show that users can easily discriminate
8 shifting directions and 2 rotation directions, and that Quick Re-
turn outperforms other confirmation techniques. Moreover, users
indicated social concerns about shifting directly forward and back-
ward, but not others.

We developed the design space of HulaMove to be easily per-
formed and socially appropriate based on the results of the first
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user study, leading to eight waist gestures. Then, we implemented
a real-time system for gesture detection and recognition. Novel
interaction techniques involving different body parts typically re-
quire custom sensors (e.g., fingertip cameras [60], ultrasonic wrist-
bands [76], and capacitive fingernails [33]), limiting the scalabil-
ity and generalizability to other applications. In contrast, HulaM-
ove does not require any additional sensors other than the Inertial
Measurement Unit (IMU) found in every smartphone. With mini-
mal calibration, users can casually put a smartphone into a pocket
near the waist (within 20 cm above or below the waist center, e.g.,
a jacket pocket or a trouser pocket). The system can dynamically
adapt to its position and robustly detect waist gestures. Using a
hierarchical machine learning model, our system can successfully
recognize eight waist gestures at an accuracy of 97.5%, with the
false-positive rate as low as 0.1% in daily routines.

Finally, we ran a usability study (N=12) under two scenarios:
a real-life scenario that simulated daily working conditions when
users’ hands and eyes were busy, and a VR scenario where users
employed HulaMove to play an immersive game. Our results re-
vealed that waist interaction only needed 58.2% of the interaction
time compared to touchscreen interactions in real-life settings (when
phones need to be taken out of the pocket), and that using waist
gestures in VR significantly increased the sense of presence and
enhanced user experience. Participants provided positive feedback
and stated a willingness to use HulaMove as a novel input tech-
nique during daily routines since it is fun and can be performed
conveniently.

Our contributions of this paper are threefold:

• We created HulaMove, a novel eyes-free and hands-free input
technique that leverages waist movement. We conducted a user
study to understand users’ ability to control their waist.

• We developed a design space for waist interaction and imple-
ment a real-time detection system using the IMU on a smart-
phone, without involving any customized hardware. Our best
machine learning model achieved an accuracy of 97.5%.

• We evaluated HulaMove under both real-life and virtual reality
scenarios and demonstrated good usability of waist interaction.

2 RELATEDWORK
In this related work section, we first provide a general overview of
interaction that utilizes different parts of the body. As HulaMove
introduces substantial body movement, we pay special attention
to the full-body interaction literature. Moreover, we used an IMU
for interaction sensing, thus we also review research on activity
recognition and monitoring with motion sensors.

2.1 Leveraging Different Body Parts for
Interaction

Recent advances in Human-Computer Interaction have shown the
capability of a wide range of human body parts for ubiquitous
interaction. One of the major categories is on-body interaction,
which refers to the use of body surfaces as an input or output chan-
nel [23, 65]. Examples include the palm [22, 66], arms [21, 32], fin-
gers [29, 68], the face [56, 74], and ears [35, 71]. Past research also
explored other parts beyond on-body surfaces to enable hands-free
or eyes-free interaction, such as feet [48, 64], teeth [9, 72], and even
hair [15]. We contribute to this area by introducing the waist as a
novel interaction channel that can support both hands-free and
eyes-free interaction.

Researchers have used various sensing techniques to support
these interaction methods. For example, Stearns et al. [61] pro-
posed TouchCam that employed two infrared sensors, an IMU and
a camera installed on the finger to recognize touch on different
on-body areas. Chan et al. [11] built Cyclops that used a fish-eye
camera worn as a pendant or a badge to recognize limb actions.
SkinMarks developed by Weigel et al. [68] used multiple forms of
capacitive sensing and deformation sensing for on-skin gestures.
Although supporting various input methods, these techniques re-
quire customized hardware, thus limiting their deployability. Hu-
laMove strictly relies on the IMU on smartphones that are already

(a) Shift (b) Rotate

Figure 1: Waist Gestures

(a) Shift (b) Rotate

Figure 2: Top View of Waist Gestures
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commercially available.Therefore, ourmethod has advantages over
previous literature with high compatibility with common devices
so that it can be easily adopted by users. The work that used the
most similar sensing technique to HulaMove is from Jeremy et al.
[54], who proposed to sense users’ foot gestureswith a smartphone
placed in a pocket. However, their detection model relies on the
phone to be placed at a strictly predetermined position, which in-
troduces additional burden on users. In contrast, our algorithm
allows users to casually put their phones anywhere close to the
waist, such as a jacket pocket, or a front/back leg pocket. We lever-
age a light-weight calibration stage to make the detection robust
to phone positions.

2.2 Full-body Interaction
Since the waist is the biggest joint centered at the human body, us-
ing it for interaction naturally introduces substantial body move-
ment, which has a similar paradigm as full-body interaction [16,
39]. Past research has explored full-body interaction in a variety of
scenarios, such as art exhibition [17], education [5], therapy [53],
and gaming [44]. Under different contexts and situations, full-body
movements are used in different ways. For example, Kjölberg [36]
proposed to embed full-body interaction into dancing as a form
of bodily communication and artistic expression. Adachi et al. [5]
built a full-body interaction system to help elementary school stu-
dents study vegetation growth. Mora-Guiard et al. [42] proposed
a design for children with Autism to explore and collaborate with
neurotypical peers in a full-body interactive AR system. Gaming
is the area that has significantly leveraged full-body interaction.
Commercially available gaming devices such as theXboxKinect [4]
andNintendo Switch [2] enablewhole-body gestures in video games.
Gerling et al. [18] designed eight static or dynamic full-body ges-
tures involving hands, arms, and legs (e.g., pretend to fly, walk in-
place) to motivate game experience for older adults. Xu et al. [69]
proposed to use directional walking with Head-Mounted Displays
(HMDs) as gestures in VR/AR games. These full-body gestures and
movement would inevitably involve some level of waist movement
in an implicit way. Perhaps the closest work is Humantenna by
Cohn et al. [14]. Although using a completely different sensing
technique, their whole-body gesture set includes gestures similar
to ours, such as torso rotation. However, none of the previous work
explicitly introduces the waist as a major interaction channel, not
to mention a detailed analysis of its interaction performance. We
address this gap in our paper.

2.3 Motion Sensors for Activity Recognition
and Monitoring

There has been extensive research on usingmotion sensors (includ-
ing accelerometers, gyroscopes, magnetometers, and often combi-
nations of these) for activity recognition [8, 38, 57]. Typical activi-
ties include standing, sitting, walking, running, climbing/descend-
ing stairs, cycling, and driving. Most researchers have focused on
cases when the device is positioned at a specific location, such
as front pant pockets [38], jacket pockets [30], or attached to the
waist [26]/arm [57]. In a real-life scenario, however, sensors can
be placed in multiple places, which leads to the on-body location
problem, as e.g., sensor readings from the arm and pockets are

very different. Twomethods are commonly employed to tackle this
problem: training one classifier per location separately, or train-
ing one classifier for all locations [58]. Another real-life problem is
the undetermined device orientation; e.g., the same device stand-
ing upright v.s. upside down will have reversed readings on one
axis. Common methods include a) applying a transformation, b)
using sign-invariant features, c) splitting horizontal and vertical
(through gravity) gestures, and d) retraining per user [43]. We re-
fer readers to a few good survey and tutorial papers for more de-
tails: [10, 43, 58]. In our paper, we develop a transformation-based
method to address these two problems simultaneously using a nat-
ural, light-weighted calibration stage to enable robust waist inter-
action recognition.

Beyond daily activity recognition, researchers also leveragewaist
motion as a tracker for physical health-relatedmonitoring [75]. For
example, Chen et al. [12] attached an accelerometer to a belt and
built a system for reliable fall detection. Hjorth et al. [28] used a
waist-worn accelerometer to measure andmonitor children’s sleep
and physical activity overnight. Ahlrichs et al. [6] employed an ac-
celerometer worn on the waist to detect the freezing of gait for
Parkinson’s disease diagnosis. Most of the previous work leverages
waist movement passively and implicitly. In contrast, HulaMove
leverages the waist in a proactive, voluntary approach to expand
users’ interaction bandwidth.

3 STUDY1: WAIST MOVEMENT CONTROL
Prior to developing the design space of HulaMove, we first need to
understand users’ capability of controlling their waist movement
under different visual feedback conditions. Our first study aims to
address this gap. The results can provide meaningful guidance on
waist interaction design, such as how many shifting or rotation
directions they can easily distinguish. Moreover, confirmation is a
fundamental aspect of any selection-based task. We also compare
three common confirmation methods to find the best method for
waist-based interaction.

3.1 Tasks and Variables
To investigate users’ ability to control their waist movement, we
designed a series of target acquisition and confirmation tasks [49,
72], and studied four important variables: waist gesture type, target
acquisition region, confirmation technique, and visual feedback
condition.

Waist gesture type: We focused on two main types of waist
gestures in the design space: shifting (Figure 1a) and rotating (Fig-
ure 1b). We evaluated them independently in separate sessions. In
the shifting session, a user’s waist center was used to determine
the selected area, i.e., the cursor was in line with the waist center’s
position.They needed to horizontally move the cursor into a target
area. In the rotating session, the cursor was vector centered at the
user’s waist center, pointing in their forward direction, and they
needed to rotate their torso to face the target direction range.

Target acquisition region: In both the shifting and rotating
sessions, the number of regions affects the width of the selection
area (i.e., the center angle of each sector). We compared different
numbers of regions in each shifting/rotating direction, including
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1, 2, 3, and 4. We also defined four directions in the shifting ses-
sion (left, right, forward, backward) and two directions in the ro-
tating session (clockwise and counter-clockwise). Therefore, the
total numbers of regions were 4,8,12,16 in the shifting session and
2,4,6,8 in the rotating session. Figure 2 shows the examples of two
regions in each direction in both sessions.

Confirmation technique: We investigated three confirmation
techniques, which were used after users moved the waist cursor
into the intended region. Button Click (Click): pressing a hand-held
button; Dwell (Dwell): maintaining the cursor in the target region
for 1 second; and Quick Return (Quick Return): quickly moving
the waist cursor back to a neutral area (below the threshold, see
Fig. 2). The threshold was adaptively set as 10% of their maximum
shifting distance in the shifting session and 10% of the maximum
rotating angle in the rotating session. ForQuick Return, to avoid the
noise introduced by subtle movements near the threshold, 300 ms
was empirically chosen as the minimal time to recognize a “quick”
return. The starting point of the returning procedure indicated the
selected position.

Visual feedback conditions: Visual feedback is an important
factor in interaction design. There were two visual feedback con-
ditions in our study. In the Full Feedback condition (Visual), all re-
gions were visible on screen outlined with borders, with the speci-
fied region for a trial in grey. Users’ waist movements and the cor-
responding cursor were visualized in real-time. The correct waist
location for shifting or direction for rotating was indicated by turn-
ing the specified region green. In the No Feedback condition (No Vi-
sual), only the neutral areawas visible.Therewere no other regions
for reference. The waist cursor would disappear once users moved
across the threshold, and only appear again after returning into
the neutral area. In real applications, Visual and No Visual could
be suitable for different situations. Although HulaMove only had
the No Visual condition (as shown in Section 4), we studied both
conditions in Study 1 to provide a comprehensive understanding
of users’ performance.

3.2 Design and Procedure
We employed a within-subjects full factorial design with repeated
measures. The four independent variables described in Section 3.1
were included: 1) visual feedback condition (Visual, No Visual), 2)
waist gesture type (shifting and rotating), 3) selectionmethod (Click,
Dwell, Quick Return), and 4) the number of regions in each shift-
ing/rotating direction (N = 1,2,3,4). There were four sessions in to-
tal (2 feedback × 2 gesture types). We pre-determined a counter-
balanced order for the four sessions. In each session, we used a
Latin square to balance the order of the selection method, and ran-
domized the order of the number of regionsN. Users repeated each
condition three times.

3.2.1 Calibration. Since waist movement range varies across peo-
ple, calibration is needed before users perform tasks. At the be-
ginning of each session, users went through a calibration stage:
they first demonstrated their maximum shifting distance and then
moved in a circle (as if they are using a hula hoop), which captured
the averagemaximum shifting distance in all directions.Then, they
rotated their torso as far as possible, once clockwise and again
counter-clockwise. This captured the average maximum rotating

angle. After the calibration, the task regions then adapted to their
waist movement ability and the direction they faced. In our study,
the average maximum shifting distance was 17.1 cm (SD = 1.9 cm,
Min = 14.1 cm, Max = 19.8 cm) and the average maximum rotating
angle was 69.9° (SD = 5.9°, Min = 64.4°, Max = 84.0°).

3.2.2 Performance Metrics. The dependent variables included 1)
success rate: the percentage of trials for a particular condition that
resulted in successful target acquisitions; 2) completion time: the
time from when the waist initially moved to leave the neutral area
until the acquisition was confirmed; 3) number of crossings: the
number of times the cursor crossed the edge of a target region
once the cursor entered the target (subtracting 1 for all trials with
Quick Return since the cursor inevitably crossed the edge when it
returned). These measures complemented each other. Success rate
and completion time indicated the overall completeness of the tasks,
while number of crossings reflected their waist control performance.

3.2.3 Procedure. Users signed the consent form and began with
a warm-up stage. After they indicated that they understood the
procedure and the gestures, they went through the calibration and
four sessions one after another. Each session took around five to
ten minutes. A five-minute break was inserted after each sessions.
Finally, the experimenter conducted a brief interview to obtain
participants’ feedback about waist interaction. The duration of the
study was about fifty minutes.

3.3 Participants and Apparatus
After obtaining University IRB approval, we recruited 12 partic-
ipants by snowball sampling (Female=5, Male=7, Age=25.2±1.8).
All participants reported being healthy (height 171±6cm), weight
69±16kg, and waist size 77±8cm). To ensure the accurate measure
of waist position and direction, we leveraged the tracking system
embedded in an HTC VIVE Pro. We mounted the one controller
on the left and the other on the right side of participants’ pants
so that the center of the two controllers indicated the waist center
and the forward direction was in line with participants’ body fac-
ing direction. The head-mounted display (HMD) was not used in
the study.

3.4 Results
Figure 3 shows the average results of Study 1. Below, we summa-
rize each factor separately.

3.4.1 Confirmation Techniques. One goal of our experiment was
to find the best confirmation technique for waist interaction. We
observed a consistent result: in both feedback conditions, Quick
Return either outperformed the other confirmation techniques or
had non-significant differences in success rate, speed, and waist
movement control stability.

We confirmed our observation with statistical analysis. Since
the data violated normality and homoscedasticity assumptions, we
applied generalized linear mixed models (GLMMs) [40] using a
Gamma link function, with confirmation techniques as the main
factor. Table 1 summarizes the GLMMs’ results, together with post
hoc pairwise z-tests with Bonferroni adjustment. The comparison
showed that in most cases, Quick Return had significantly better
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Figure 3: Results of Study 1. The figures on the top show the average success rate, completion time, and number of crossings
in shifting sessions. The figures on the bottom show the results of the same three metrics in rotating sessions. In each figure,
the left side shows the results with full visual feedback, while the right side shows the results without visual feedback. Error
bars indicate the standard deviation.

performance than other techniques (𝑝 < 0.05). The results are con-
sistent across gesture types and visual feedback conditions. There-
fore, we focused on the trials with Quick Return in the rest of the
analysis.

3.4.2 Number of Regions. A primary goal of this first study was
to determine howmany regions in each shifting/rotating direction
users can discriminate easily and control comfortably with decent
performance. We applied GLMMs on the data using Quick Return,
with the number of regions as the main factor. Similarly, z-tests
with Bonferroni adjustment was used as the post hoc method. Ta-
ble 2 summarizes all results.

There were a few observations. First, in general, performance
decreased as the number of regions increased. The larger number
of regions led to smaller ranges and increased the difficulties of

waist movement control, especially when the number of regions
was larger than 3. The success rate dropped greatly at 𝑁 = 3 and
𝑁 = 4 in both visual feedback conditions, and the drop was more
significant in No Visual. “When there were 12 or 16 targets, it was
almost impossible for me to distinguish between two adjacent areas.”
(P2).

Second, in waist shifting sessions, the difference between 𝑁 = 1
and 𝑁 = 2 was not significant. Among the 6 post hoc pairwise
comparisons in the top part of Table 2, three comparisons did not
indicate significance at level 𝑝 = 0.05 and one showed that 𝑁 = 2
had better performance than 𝑁 = 1. In contrast, in waist rotating
sessions, 𝑁 = 1 had significantly better performance than 𝑁 = 2
in most metrics. Based on these results, we chose 𝑁 = 2 for waist
shifting and 𝑁 = 1 for waist rotating to maximize the number of

Mea-
sures

Shifting & Full Feedback Shifting & No Feedback
AOV (𝜒2 (2)) Post Hoc AOV (𝜒2 (2)) Post Hoc

Success 2.42, 𝑝 = 0.290 Quick Return ∼ 𝐶𝑙𝑖𝑐𝑘 ∼ 𝐷𝑤𝑒𝑙𝑙 2.74, 𝑝 = 0.25 Quick Return ∼ 𝐶𝑙𝑖𝑐𝑘 ∼ 𝐷𝑤𝑒𝑙𝑙
Time 34.81, 𝑝 < 0.001∗∗∗ Quick Return < 𝐶𝑙𝑖𝑐𝑘 ∼ 𝐷𝑤𝑒𝑙𝑙 5735, 𝑝 < 0.001∗∗∗ Quick Return < 𝐶𝑙𝑖𝑐𝑘 < 𝐷𝑤𝑒𝑙𝑙
NC 28.44, 𝑝 < 0.001∗∗∗ Quick Return < 𝐶𝑙𝑖𝑐𝑘 ∼ 𝐷𝑤𝑒𝑙𝑙 42.83, 𝑝 < 0.001∗∗∗ 𝐶𝑙𝑖𝑐𝑘 < Quick Return < 𝐷𝑤𝑒𝑙𝑙
Mea-
sures

Rotating & Full Feedback Rotating & No Feedback
AOV (𝜒2 (2)) Post Hoc AOV (𝜒2 (2)) Post Hoc

Success 9.71, 𝑝 = 0.007∗∗ 𝐶𝑙𝑖𝑐𝑘 ∼ Quick Return > 𝐷𝑤𝑒𝑙𝑙 0.82, 𝑝 = 0.662 Quick Return ∼ 𝐷𝑤𝑒𝑙𝑙 ∼ 𝐶𝑙𝑖𝑐𝑘
Time 23.05, 𝑝 < 0.001∗∗∗ Quick Return < 𝐶𝑙𝑖𝑐𝑘 < 𝐷𝑤𝑒𝑙𝑙 13.69, 𝑝 = 0.001∗∗ Quick Return ∼ 𝐷𝑤𝑒𝑙𝑙 ∼ 𝐶𝑙𝑖𝑐𝑘
NC 3.66, 𝑝 = 0.161 Quick Return ∼ 𝐶𝑙𝑖𝑐𝑘 ∼ 𝐷𝑤𝑒𝑙𝑙 7.76, 𝑝 = 0.02∗ Quick Return ∼ 𝐶𝑙𝑖𝑐𝑘 < 𝐷𝑤𝑒𝑙𝑙

∗ < 0.05, ∗∗ < 0.01, ∗∗∗ < 0.001, </> implies post hoc significance (𝑝 < 0.05). ∼ means no significant difference. Same in Table 2
Table 1: Statistical analysis of confirmation techniques. Success: Success Rate, Time: Completion Time, NC: Number of Cross-
ing. The relative positions of the selection method in post hoc columns indicate the mean value order. The more favorable
techniques (higher Success, lower Time and NC) are put before the less favorable ones.



CHI ’21, May 08–13, 2021, Yokohama, Japan Xu et al.

Mea-
sures

Shifting & Full Feedback Shifting & No Feedback
AOV (𝜒2 (2)) Post Hoc AOV (𝜒2 (2)) Post Hoc

Success 113.2, 𝑝 < 0.001∗∗∗ 1 > 2 > 3 > 4 127.2, 𝑝 < 0.001∗∗∗ 1 ∼ 2 > 3 > 4
Time 120.9, 𝑝 < 0.001∗∗∗ 1 ∼ 2 < 3 < 4 159.0, 𝑝 < 0.001∗∗∗ 2 < 1 < 3 < 4
NC 46.2, 𝑝 < 0.001∗∗∗ 2 ∼ 1 < 3 ∼ 4 47.5, 𝑝 < 0.001∗∗∗ 1 ∼ 3 ∼ 2 < 4

Mea-
sures

Rotating & Full Feedback Rotating & No Feedback
AOV (𝜒2 (2)) Post Hoc AOV (𝜒2 (2)) Post Hoc

Success 15.2, 𝑝 = 0.002∗∗ 1 ∼ 2 ∼ 3 ∼ 4 150.6, 𝑝 < 0.001∗∗∗ 1 > 2 > 3 > 4
Time 48.5, 𝑝 < 0.001∗∗∗ 1 < 2 ∼ 3 ∼ 4 162.8, 𝑝 < 0.001∗∗∗ 1 < 2 < 4 ∼ 3
NC 17.0, 𝑝 < 0.001∗∗∗ 1 ∼ 2 ∼ 3 ∼ 4 19.6, 𝑝 < 0.001∗∗∗ 2 ∼ 1 ∼ 3 ∼ 4

Table 2: Statistical analysis of region number.We focus on the data withQuick Return only.The relative positions of the region
numbers in post hoc columns indicate the mean value order.

gestures while having satisfactory performance, thus leading to 10
(2 × 4 + 1 × 2) waist gestures.

3.4.3 Visual Feedback. Unsurprisingly, removing the visual feed-
back increases the difficulty of the task, especially on the success
rate metric. We observed a significant drop in success rate in both
shifting (𝜒2 (2) = 10.1, 𝑝 < 0.01) and rotating sessions (𝜒2 (2) =
27.3, 𝑝 < 0.001). In the rotating session the completion time with-
out feedback was also significantly longer (𝜒2 (2) = 39.0, 𝑝 <
0.001). Other results did not indicate significance. However, if we
focus on 𝑁 = 2 in the waist shifting session, and 𝑁 = 1 in the
waist rotating session, GLMMs did not indicate any significant dif-
ference between feedback types.

3.4.4 Subjective Feedback. During the experiment, we received some
interesting comments from the participants. Three participants ex-
pressed their concerns about the social acceptance of forward-shifting
gestures. Two participants showed similar concerns about backward-
shifting gestures. To compare the 10 selected gestures more for-
mally, we sent a short questionnaire to the 12 participants, asking
three questions – physical demand, mental demand, and social ap-
propriateness – for each gesture on a 7-point Likert scale.

Figure 4 showed the rating results of the 10 gestures, ranked
from best to the worst. The results were consistent with the feed-
back during the study: forward shifting and backward shifting ges-
tures received the most negative ratings, especially from a social
perspective.

4 HULAMOVE SYSTEM DESIGN
The results of Study 1 are informative for the design of HulaMove:
using Quick Return had the highest Success and lowest Time and
Number of Crossings in general; Users could achieve similar per-
formance in No Visual and Visual at 𝑁 = 2 for shifting gestures
and 𝑁 = 1 for rotating gestures. We identified a few guidelines for
waist interaction design:

(1) Quick Return is the best technique for confirmation
(2) Using 𝑁 = 2 for waist shifting (eight directions) and 𝑁 = 1 for

rotating (two directions) balance the number of gestures and
performance.

(3) Forward shifting and backward shifting gestures are consid-
ered socially inappropriate.

Therefore, our design space of HulaMove focuses on eight gestures
withQuick Return: rotate left, rotate right, shift left, shift right, shift
forward left, shift forward right, shift backward left, and shift back-
ward right.

Themajority of pockets where users put their phones were near
the waist, such as jacket pockets, hoodie pockets, and trouser pock-
ets. Leveraging a smartphone at these positions for waist gesture
detection could obviate the need for any customized sensors, mini-
mize user burden, and increase the scalability and generalizability.
Therefore, we developed an algorithm and a real-time system us-
ing IMU data collected from a smartphone placed at any position
near the waist (defined as 20 cm above or below the waist center)
for waist gesture detection and recognition.

To detect a user’s waist gestures from a phone that could be
placed at multiple positions, we calibrated the IMU data by trans-
forming the movement of the phone to the movement of the hu-
man body. After aligning the IMU signals with human body co-
ordinates, a gesture detection module was applied to the aligned

Figure 4: Ratings of the selected 10 waist gestures. Scores are
pre-processed so that higher scores indicates better user ex-
perience.
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Figure 5: Overview of the system pipeline.

signals to identify any present waist gesture. Once a gesture mo-
tion was captured, it was fed into a gesture recognition module to
get the output. Figure 5 visualizes the whole pipeline.

4.1 Pre-processing and Calibration by
Transformation

We collected IMU data (linear accelerometer 𝒂𝒄𝒄 , and gyroscope
𝒈𝒚𝒓𝒐, both represented as 𝑥,𝑦, 𝑧 3-dimension vectors) at 30 Hz.The
average duration of a waist gesture was 1.6 s (SD=0.3 s) according
to two authors’ manual annotations of over one hundred samples.
Most waist movement’s duration for gestures was between 1.0 and
2.0 s (0.5-1 Hz). We applied a low-pass Butterworth filter [55] (cut-
off at 2 Hz, twice the upper bound of waist gestures) on the raw
IMU data to remove high-frequency noise and smooth the signal.

We then applied the calibration on the filtered data.Thefirst step
is to identify the 3×3 rotation matrix𝑨 = [𝑨𝑿 ;𝑨𝒀 ;𝑨𝒁 ] from the
human body coordinate space to the phone coordinate space (see
the leftmost of Figure 5), i.e., 𝒂𝒄𝒄𝒑 = 𝑨·𝒂𝒄𝒄𝒉 and𝒈𝒚𝒓𝒐𝒑 = 𝑨·𝒈𝒚𝒓𝒐𝒉 ,
ℎ/𝑝 indicates the human body/phone coordinate space.This matrix
can transform the IMU signals originally collected in the phone co-
ordinate space to the signals in the human body coordinate space.
To obtain the matrix, we asked users to follow a count-down timer
to perform four gestures after they put the phone in a pocket: a
shift left, a shift right, a rotate left, and a rotate right. Then, we
took a 3.0 s window starting from the timer to ensure that a gesture
could be covered. We used the shift left and shift right data for cali-
brating the 𝑥-axis (i.e., obtaining 𝑨𝑿 ), since these two movements
were in line with the 𝑥-axis in human body coordinate space. Simi-
larly, the rotate left and rotate right data were used for calibrating
the 𝑦-axis (𝑨𝒀 ).

A shift right gesture with quick return can be divided into four
stages: 1) speed up (𝑣𝑒𝑙ℎ𝑥 > 0, 𝑎𝑐𝑐ℎ𝑥 > 0), 2) slow down until reach-
ing themaximum shifting distance (𝑣𝑒𝑙ℎ𝑥 > 0, 𝑎𝑐𝑐ℎ𝑥 < 0), 3) return
back and speed up in the opposite direction (𝑣𝑒𝑙ℎ𝑥 < 0, 𝑎𝑐𝑐ℎ𝑥 < 0),
4) slow down and stop at the original position (𝑣𝑒𝑙ℎ𝑥 < 0, 𝑎𝑐𝑐ℎ𝑥 >
0). In the collected 𝒂𝒄𝒄 data (i.e., 𝒂𝒄𝒄𝒑 ), the sequence of |𝒂𝒄𝒄𝒑 |
(
√
𝑎𝑐𝑐2𝑝𝑥 + 𝑎𝑐𝑐2𝑝𝑦 + 𝑎𝑐𝑐2𝑝𝑧 ) has a small peak (during stage 1), followed

by a wider peak (during stage 2 and 3), followed by another small
peak (during stage 4). The upper part of Figure 6 illustrates this
procedure.

Ideally, during a shift right gesture, the waist moves in +𝑥 direc-
tion and returns in −𝑥 direction in human body coordinates, i.e.,

𝒂𝒄𝒄𝒉 = [𝑎𝑐𝑐ℎ𝑥 , 0, 0]𝑇 , 𝒅 𝒊𝒓𝒉sft = [1, 0, 0]𝑇 , and 𝒂𝒄𝒄𝒑 have a consis-
tent direction 𝒅 𝒊𝒓𝒑sft (and its reverse) in the space. However, due
to the human body’s anatomic property and movement control er-
ror, the direction is not perfectly consistent. Thus, we select a few
representative periods and use their average as the moving direc-
tion. Specifically, we choose the periods when |𝒂𝒄𝒄𝒑 | (= |𝒂𝒄𝒄𝒉 |) is
greater than its mean plus one standard deviation within the 3.0 s
window, because small 𝒂𝒄𝒄𝒑 is more likely to be biased by noise.
This identifies the three peaks that happen naturally during the
four stages of a shifting gesture. As mentioned above, the direction
of 𝒂𝒄𝒄𝒑 during stage 2 and 3 (the second peak) is opposite to stage 1
(the first peak) and stage 4 (the third peak). Therefore, after identi-
fying the three peaks in 𝒂𝒄𝒄𝒑 , we reverse the second peak and then
calculate their average, 𝒅𝒊𝒓𝒑sft-r , as the direction of the shift right
gesture. To further reduce the error, we calculate the direction of
the shift left gesture in the sameway (𝒅𝒊𝒓𝒑sft-l ), reverse its direction
(−𝒅𝒊𝒓𝒑sft-l ) so that it is also in +𝑥 direction, and set the final shifting
direction as the average of the two: 𝒅 𝒊𝒓𝒑sft = (𝒅𝒊𝒓𝒑sft-r −𝒅 𝒊𝒓𝒑sft-l )/2.
Then, we can easily calculate 𝑨𝑿 by

𝒅𝒊𝒓𝒑sft = 𝑨 · 𝒅𝒊𝒓𝒉sft

𝒅𝒊𝒓𝒑sft = [𝑨𝑿 ;𝑨𝒀 ;𝑨𝒁 ] · [1, 0, 0]𝑇

𝒅𝒊𝒓𝒑sft = 𝑨𝑿

For the rotating gestures, the four stages are reflected by two
peaks in 𝒈𝒚𝒓𝒐𝒑 , one for rotating to the maximum angle (𝑔𝑦𝑟𝑜ℎ𝑦

> 0) and one for turning back (𝑔𝑦𝑟𝑜ℎ𝑦
< 0). The same procedure

can be applied on the rotate left and rotate right gestures to ob-
tain 𝑨𝒀 . Since a rotation matrix is an orthogonal matrix, if 𝑨𝑿
and 𝑨𝒀 are not orthogonal, we adjust them slightly by rotating
around their common vertical axis until they are orthogonal. Then,
we have 𝑨𝒁 = 𝑨𝒀 ×𝑨𝑿 .

Therefore, after a quick calibration stage with four gestures, we
obtained the rotation matrix 𝑨 = [𝑨𝑿 ;𝑨𝒀 ;𝑨𝒁 ] and transformed
all incoming signals from the phone coordinate space to the hu-
man body coordinate space by 𝒂𝒄𝒄𝒉 = 𝑨−1 · 𝒂𝒄𝒄𝒑 and 𝒈𝒚𝒓𝒐𝒉 =
𝑨−1 · 𝒈𝒚𝒓𝒐𝒑 . Figure 6 shows the eight gestures’ typical IMU sig-
nals when a phone is put in the right front trouser pocket at a
random orientation and its corresponding calibrated signals after
transformation.

A phone placed in a pocket could change its position and orien-
tation slightly when the user moves around.This would lead to the
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Figure 6: IMU signals of the eight waist gestures collected by a phone put in the right front trouser pocket. The top row shows
the original data with a Butterworth low-pass filter at 2 Hz. The bottom row shows the data after transformation. Gyroscope/-
linear accelerometer signals are highlighted with higher opacity for rotating/shifting gestures respectively.

change of the rotation matrix 𝑨. To mitigate this issue, our algo-
rithm updated 𝑨 dynamically once a shift left/right or rotate left-
/right was detected (as mentioned in Section 4.2 and Section 4.3).
When one of these four gestures was detected, its corresponding
𝒅 𝒊𝒓𝒑 was appended to a record list and we used a moving aver-
age to update 𝑨𝑿 (for shifting) or 𝑨𝒀 (for rotating), followed by
updating 𝑨𝒁 and 𝑨.

4.2 Gesture Detection
After pre-processing and calibration, we applied a gesture detec-
tion classifier on the transformed signals using a sliding window.
The size of the window was 3.0 s, with the step size as 0.2 s. The
classifiers took both accelerometer and gyroscope data as the input
(30𝐻𝑧 × 3 𝑠 × 6) and used a 5-layer convolutional neural network
(CNN) [37] for detection, with three 1-dimensional convolutional
layers and two fully connected layers, all using the ReLu activa-
tion function [46]. Amax-pooling layer [45], a batch normalization
layer [31] and a dropout layer at a rate of 0.5 [59] were inserted
between every two convolutional layers. The classifier output a
1 whenever the IMU signals belonged to a gesture and a 0 other-
wise. Almost all waist gestures were longer than one second, so the
presence of a gesture should lead the classifier to produce multiple
1’s in succession; however, temporal shifts in the gesture signals
and noise could make the classifier’s serial output noisy. We reme-
died this issue by using a majority voting scheme to smooth the
sequence, where adjacent sequences of consecutive 1’s are merged
if they were separated by one or two 0’s and the same for con-
secutive 0’s. A gesture was defined to be present whenever there
were 3 or more consecutive 1’s and followed by more than two 0’s.
Whenever a gesture occurred, the system took a 3.0 s window cen-
tered on the sequence of 1’s and fed it into the gesture recognition
module.

4.3 Gesture Recognition
The final step was to classify the captured gesture signals. The
straightforward methods, including static and dynamic threshold,

as well as signal processing and feature engineering, can be eas-
ily confused by many unexpected variations of users’ waist move-
ment, leading to biased rotation matrix and IMU signals. Another
method is to train an eight-class classifier. However, such an ap-
proach would require a large amount of training data in each class.
As we show in Section 4.4, these approaches had low performance
on our dataset. Instead, we used a hierarchical tree-CNN [50]which
divided the task into four easier complementary binary or ternary
classification tasks. This significantly simplified recognition and
improved the results. Specifically, the eight gestures could be split
as follows:

(1) Type Classifier: the main signals for rotating gestures came
from the gyroscope and the ones for shifting gestures came
from the linear accelerometer. We first distinguish whether a
gesture is rotating or shifting.

(2) Rotation Classifier: the two rotating gestures could be han-
dled by a binary classifier.

(3) Shift (Left/Right) Classifier: among the six shifting gestures,
three are shifting to the left side and three are to the right side.
We used a binary classifier to extract this property.

(4) Shift (Forward/Backward) Classifier: two gestures are for-
ward, two are backward, and two are neither of them. We used
a ternary classifier to distinguish them. Combined with the
Shift(Left/Right) Classifier, the system could uniquely identify
a shifting gesture.

Figure 7 shows the classification tree. Each classifier had the
same network structure as the gesture detection classifier besides
the output unit number (2 for binary or 3 for ternary). Note that
each classifier was trained on a different subset of the data, e.g.,
the rotate classifier would be trained only on the data of rotating
gestures.
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Figure 7: Tree-CNN framework of waist gesture recognition. The four rectangles indicate the four classifiers on tree nodes.
We present one example of the classifier network structure. Others classifiers share the same structure other than the final
output unit number.Their leave-one-out accuracy are in the box.The rounded rectangles indicate the direct output of the three
second-layer classifiers. The dashed rectangles on the right are the final recognized gestures.

4.4 Data Collection and Model Results
4.4.1 Data Collection. Three authors collected the data used to
train our models using a custom Flask-based web app. The app
sampled the IMU sensor on the phone at 30 Hz.

The authors accessed theweb app using their ownAndroid phone
and followed the instructions to complete one data collection epoch:
1) placed the phone in a pocket near the waist, 2) performed the cal-
ibration stage with four gestures, 3) performed the eight gestures
in a random order, in sync with the countdown timer presented on
a laptop screen; 4) performed each gesture 10 times. Each author
repeated this epoch multiple times. They changed the pocket and
phone orientation every time to ensure variety in the data. Overall,
20 epochs were collected from the three authors in total, leading
to 1600 gestures in total.

For each collected gesture, the timer counted down for 2 sec-
onds, and then participants had another 4 seconds to complete the
gesture. Data were recorded during all 6 seconds to capture IMU
signals both with and without gestures. Moreover, three authors
also kept the web app active and carried the phone in their pocket
during their daily routines. Six hours of IMU data were collected
and labeled as noise. Activities such as sitting, walking, lying down,
standing still, climbing stairs were all included.

4.4.2 Data Cleaning and Augmentation. The data was organized
into labeled windows. Recall that the timer started 2.0 s before the
start of each gesture. We used a sliding 3.0 s window, with a 0.2 s
step size to generate the training data. Since we sampled at 30Hz,
each window included 90 samples. If more than 50% of them (>45)
overlapped the gesture time (2.0-4.0 s), it was labeled as a positive
example of that gesture. We additionally applied a non-overlapped

3.0 s sliding window to the longitudinally collected noise and la-
beled all samples as negative for gesture detection.

We then augmented the data set further by 1) flipping each sig-
nal [25], 2) adding random Gaussian noise [71]. This increased the
size of the data by 3 times (each original sample 𝑠 , + 𝑠 flipped, + 𝑠
with noise, + 𝑠 flipped and with noise).

4.4.3 Results. Overall, more than 120 thousand noise samples and
14 thousand gesture samples were generated using this approach.
Note that for each gesture recognition classifier, only a subset of
the data was used, e.g., rotate classifier only leveraged the two ro-
tating gestures’ data.

We labeled all data with an epoch number and used leave-one-
epoch-out cross-validation to evaluate the performance of the ges-
ture detection and recognition modules, i.e., taking data from one
epoch as the testing set and the rest of the epochs as the training
set. For gesture recognition, we also added noise data to the train-
ing set in each loop to make the model more robust to noise. This
does not affect the testing accuracy since the noise data was not
added during the testing.

Gesture Detection. Combined with the smoothing technique,
our gesture detectionmodel captured all gestures successfully (100%
true positive rate). When we tested the performance of the model
without smoothing, the accuracy dropped to 90.1%. The misclassi-
fied samples were mainly near the 50% overlap area. This reflects
the importance of our smoothing technique. Moreover, We also
applied the model on a subset of noise data withheld from the
training. The false positive rate was only 0.1%. When the model
was tested with a sliding windowmechanism with 0.2 s as the step
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size, the false positive rate further dropped to 0.03% (about 5.5 false
positive per hour).

Gesture Recognition. The type, rotate, shift left/right, and shift
forward/backward classifiers all achieved satisfactory average ac-
curacy: 99.2%, 99.1%, 99.7%, and 97.8%, respectively. Combining all
the four classifiers together, the final gesture recognition module
achieved an accuracy of 97.5%. Figure 8 shows the confusion ma-
trix. Compared to the moving-average threshold (Acc: 80.5%), a
SVM (Acc: 82.1%), or a conventional multi-class CNN (eight class)
(Acc: 92.0%), our tree-CNN structure significantly improved the
performance of gesture recognition.

Combining the gesture detection and recognition modules, the
overall performance of our model on the gesture dataset reached
an accuracy of 97.5% and an F1-score of 97.2%. Moreover, as we
show in the next usability study (Section 5), ourmodel also had sim-
ilar performancewhen applied on another 12 users’ data, achieving
an accuracy of 96.8% and an F1-score of 96.9%.

5 STUDY2: USABILITY EVALUATION
We conducted a second user study and evaluated a real-time im-
plementation of HulaMove on its performance and usability.

5.1 Tasks and Variables
We envision HulaMove being used in a wide range of daily sce-
narios. We split them into two categories, interactions in the real
physical world and in AR/VR, and chose typical tasks for the eval-
uation study.

5.1.1 Working in Physical World. As HulaMove has the advantage
to provide eyes-free and hands-free interaction, it is suitable for
many cases when users are standing and their hands are busy, such
as cooking in the kitchen.

Figure 8: Confusion matrix of the eight waist gestures. The
overall accuracy is 97.5%.

Task:We designed two common phone-based applications that
often happen during these daily cases. Each of them involved a
set of operations. 1) Music player: users controlled music with five
actions, including play/pause, volume up, volume down, next song,
and previous song; 2) Phone call: when a phone call came in, users
could either answer, reject, or mute the call.The left side of Figure 9
illustrates the two tasks.

Setups: Two setups were involved in the study. One based on
our system and the other based on touchscreen input (the standard
input mechanism enabled by smartphones). In both setups, users
held an empty paper box at hand, to simulate the daily cases where
eyes and hands were busy. Moreover, the phone was put in their
preferred trouser pocket (a common scenario in daily cases), so in-
teractions were not visually available initially. 1) HulaMove: users
used waist gestures to complete the task; 2) Pocket: users need to
put down the box, remove the phone from the pocket, and then
complete the task. The upper part of Table 3 shows the specific
mapping of the two setups.

Note that HulaMove was not designed to replace the existing
interaction techniques, nor was the purpose of this study to com-
pare our method against the baseline. We picked the pocket setup
as this is one of the most common and representative scenarios in
daily life where HulaMove can be useful.

5.1.2 Games in VR. Another important use case of HulaMove is in
AR/VR, where users can use waist gestures as another input chan-
nel. Such a connection between the virtual world and the physical
body can potentially increase users’ presence in the virtual world.

Task: We developed a VR game similar to BeatSaber [1]. Users
stood still in the center of a virtual hallway, with a series of ob-
stacles coming in front of them. Users could avoid obstacles by
taking certain actions (slide left/right, jump, and squat). Some ob-
stacles could also be destroyed with the hitting skill. Users started
with three health points (HP) and lost one HP if they ran into an
obstacle. The game ended when HP dropped to zero. The right side
of Figure 9 shows a moment when a user was playing the game.

Setups: We have two setups for the VR game, one based on
our system and the other based on a hand controller. 1) HulaMove:
users put a phone into their preferred trouser pocket, and used
waist gestures to play the game; 2) Hand controller: users pressed
buttons on the hand controller to play the game. The bottom part
of Table 3 shows all operations available in the VR world.

5.2 Design and Procedure
We employed a within-subject design for both tasks. In the phys-
ical tasks, the main independent variables were the task (music
player and phone call) and the setup (waist v.s. pocket). In the VR
game, the only independent variable was the setup (waist v.s. hand
controller). This led to six sessions in total, four for the physical
tasks (2 setups × 2 tasks) and two for the VR game (2 setups). The
scenario order, the setup order and the inner task order, were all
counterbalanced. For physical tasks, users repeated each operation
five times. For the VR game, users played it once until they lost or
for 10 minutes. If users lost the gamewithin 3 minutes, they played
it one more time.
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Figure 9: Task Setups of Study 2. Left) the UI of the two tasks
in physical world. The two physical buttons on the left edge
are used for volume adjustment, and the button on the right
edge is used for muting a call. Right) a VR game similar to
BeatSaber. Users can avoid or destroy the obstacles with dif-
ferent gestures. Gesture mappings are listed in Table 3.

5.2.1 Usability Metrics. For the two physical tasks, we measured
the time that elapsed from when users began their interaction (fol-
lowing a count-down instruction) to when they completed each
operation. We used a 7-point Likert scale NASA-TLX question-
naire [24] to measure the perceived workload and the effectiveness
of the gestures in each setup [34, 70]. For the VR game, we used
the same NASA-TLX questionnaire. Moreover, we also included
four questions from the igroup presence questionnaire (IPQ) [63]
to measure presence during the VR experience.

5.2.2 Procedure. Users signed the consent form and began with
a warm-up stage. Before the physical tasks and VR game sessions,
users got themselves familiarized with the operations and interac-
tions. They went through six sessions one by one and filled in the
questionnaires. A 2-minute break was placed after each sessions.
Note that at the beginning of each session with HulaMove, they
went through a quick calibration stage with the four gestures to
ensure our algorithm worked effectively. After they completed all
tasks, the experimenter conducted a brief interview to collect their
feedback. The duration of the study was about forty minutes.

Task Operation Waist Gesture Baseline
Music Play/Pause Rotate L/R Virtual Btn
Music Vol Up Shift FL/FR Physical Btn
Music Vol Down Shift BL/BR Physical Btn
Music Next Shift R Virtual Btn
Music Previous Shift L Virtual Btn
Call Answer Shift R/FR/BR Virtual Btn
Call Reject Shift L/FL/BL Virtual Btn
Call Mute Rotate L/R Physical Btn
VR Slide Left Shift L TrackPad
VR Slide Right Shift R TrackPad
VR Jump Shift FL/FR TrackPad
VR Squat Shift BL/BR TrackPad
VR Destroy Rotate L/R Trigger

Table 3: The gesture mapping design of HulaMove gestures
and baseline operations for the three applications. L/R/F/B
are short for left/right/forward/backward.

5.3 Participants and Apparatus
Due to the difficulty of recruiting participants during a pandemic,
we recruited 6 participants from Study 1 and 6 new participants (Fe-
male=4, Male=8, Age=25.0±2.0). The study was IRB-approved and
all participants reported themselves as healthy. All participants
were informed to wear pants with at least one pocket for the study.

We used a Samsung Galaxy S8 as the IMU data collector. The
mobile phone sent data to a laptop (Windows 10 OS) via a Flask-
based web application at 30 Hz. The recognition algorithm ran on
the laptop in real-time. For the VR game, we used the same HTC
VIVE Pro system as Study 1. The algorithm sent its recognition to
the VIVE via a ZeroMQ-based local network.

5.4 Results
Our real-time systemworked well with new users.Throughout the
12 participants’ studies, there were only seven false-positive cases
in total (less than 1% of the performed gestures) and the average
number of crossing is also low (1.3±1.0). Among all detected ges-
tures, each participant experienced less than two misclassified ges-
tures on average (23 in total out of 717 gestures, leading to an accu-
racy of 96.8% and an F1 score of 96.9%). The errors happened sepa-
rately and were distributed among participants (1.9 ± 0.9). Overall,
the real-time performance of our system was consistent with our
testing results in Section 4, indicating the robustness of the model.
The average system delay time is 445 ms. Since our classifiers are
all light-weight, the computation time is minimal. The main delay
came from the gesture detection module as it needed to wait for
two extra two sliding window steps (0.4 s) after a gesture was com-
pleted to produce two consecutive negative windows (0’s) after a
sequence of positive windows (1’s) (see Section 4.2).

The study results indicated the advantages of our technique. We
summarize all metrics in Figure 10. For the physical world tasks,
we applied Wilcoxon signed-rank post hoc tests on each subjec-
tive question, respectively. The results did not indicate any signif-
icance. The overall subjective usability of HulaMove was similar
to that of the most commonly-adopted touchscreen method. How-
ever, HulaMove greatly accelerated the interaction. A GLMM with
a log link function on the time data, using the task and the setup
as the main factors, showed the significance on Setup (𝜒2 (2) =
885.5, 𝑝 < 0.001∗∗∗), but not on Task (𝜒2 (2) = 0.6, 𝑝 = 0.42)
nor the interaction between the two (𝜒2 (4) = 1.0, 𝑝 = 0.31). Hu-
laMove significantly reduced interaction time by 41.8% (1.56 s v.s.
2.68 s) compared to the baseline.

In the VR game, although the new technique was perceived as
more physically demanding (𝑊 = 6.0, 𝑝 = 0.04∗, none of the other
TLX questions showed significance), the difference was small (3.3
v.s. 2.3).More importantly, participants reported significantly higher
scores on general presence (𝑊 = 7.0, 𝑝 = 0.01∗), spatial presence
(𝑊 = 2.0, 𝑝 = 0.01∗), and engagement (𝑊 = 7.5, 𝑝 = 0.02∗). The
interview with participants also revealed positive feedback. P10
mentioned the improvement of virtual presence explicitly: “I love to
use my body to play the game [in the VR session]. I felt much more
engaged!” P7 wanted HulaMove to be used in his daily routines:
“It would be fantastic if my own phone can support this. Sometimes
this can be really helpful.”. He often worked at a standing desk and
thought having this technique would be convenient and make the
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whole experience more fun. Interestingly, we also received some
inspiring feedback from participants. After playing the VR game,
P5 asked “Are you planning to use this as an exercise game?… This
would be helpful when people have to stay at home because of the
pandemic.” We discuss more potential applications of our method
in Section 6.1. Overall, HulaMove provides a convenient and natu-
ral eyes-free and hands-free input method, which can significantly
accelerate the interactions and improve the immersive experience
in AR/VR.

6 DISCUSSION
We summarize the contributions and the meanings of HulaMove
from various perspectives. From the research perspective, it pro-
vides the first systematic investigation of how well users can con-
trol the waist as an active input method, and the first design space
of waist interaction. This adds an important piece to the existing
body gesture-based interaction techniques. From the technologi-
cal perspective, HulaMove can achieve high accuracy of recogni-
tion with only a commodity mobile phone without any customized
sensor.This ensures the scalability and generalizability of our tech-
nique. From the design perspective, HulaMove is a new hands-free
and eyes-free technique that can expand the existing input band-
width. Moreover, using the body for interaction can establish an
interesting body connection, which can lead to more engagement
in the physical world and higher presence in the virtual world.

In this section, we first discuss the potential use cases of Hu-
laMove in Section 6.1. We also discuss the relationship between
our technique and other related interaction methods in Section 6.2.
Finally, we reflect on the limitations and future work in Section 6.3.

6.1 Potential Applications
6.1.1 Eyes-free and Hand-free Interaction. Using the waist for in-
teraction does not require visual attention. It can provide an auxil-
iary input channel that is both eyes-free and hands-free. This can
be particularly useful when users are busy with their main work.
For example, when users are working (e.g., soldering circuits) and
want to do some quick and simple operations on the phone such
as changing the music, they need to put down the soldering iron,
clean their hands, and pick up the phone to interact with. With Hu-
laMove, their eyes and hands can still be kept on the circuits while
performing the interaction. Similar cases can happen in daily rou-
tines when users are cooking in the kitchen, doing home chores, or
carrying bags after shopping, etc. Moreover, when users are work-
ing on a computer at a standing desk, HulaMove can be leveraged
as a convenient way for quick information retrieval. In addition to
using finger gestures on a trackpad to switch pages, applications,
and desktops, users can use HulaMove with a sense of 3D space
around the body, which can potentially make the retrieval process
more intuitive and interesting.

6.1.2 Immersive Experience. AR/VR provides another big applica-
tion space where our technique can be useful. HulaMove requires
users to move their waist for interaction, which can establish a tie
between the physical body and the virtual environment. As found
in Study 2, the connection can significantly increase users’ sense
of presence in the virtual world. Note that the mapping between
waist gestures and effects needs to be carefully designed. We rec-
ommend the effect of waist gestures in the AR/VR should be linked
to the virtual avatar body instead of some simple operations to in-
crease immersion, such as controlling the virtual body to avoid

Figure 10: Results of Study 2. The top two figures show the completion time and NASA-TLX ratings of the physical world
experience. The bottom two figures show the ratings of IPQ and NASA-TLX of the VR world experience.
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obstacles, or fetching objects floating around the virtual body [73].
This is quite different from supporting quick operations in physical
world applications mentioned above. In AR/VR, HulaMove should
provide engaging effects to ensure a strong connection between
the physical and virtual worlds.

6.1.3 Exercise Game. In Study 2, comments from P5 reveal the po-
tential for HulaMove to be used for exercise. The NASA-TLX rat-
ings in the bottom part of Figure 10 show that the only question
that HulaMove had worse ratings is for physical demand.This “dis-
advantage” can actually be leveraged as one “feature” of HulaMove
for it to be used as a low-cost, convenient inputmethod for exercise
games. Users can use waist gestures to interact with a video game
or an immersive AR/VR game, similar to the Ring Fit Adventure [3].
The intensity of the game can be adapted to each individual’s exer-
cise plan or goal. In such a way, HulaMove can also provide health
benefits beyond convenience and virtual presence.

6.2 Around-body Interaction and On-device
Interaction

There are more dimensions to be explored in our design space. For
instance, the shifting distance can potentially be split into multi-
ple levels (e.g., close to the center v.s. far from the center), which
leads to concentric circles with different diameters and further di-
vides the space around users’ bodies into more regions.This is sim-
ilar to the concept of around-body interaction proposed by Chen
et al. [13] to expand the interaction space, switch between applica-
tions/modes, and increase devices’ context-awareness by holding
a mobile phone in multiple regions around a user’s body. Instead
of directly moving the phone, in HulaMove, users could move their
waist to different regions (with a quick return) as different interac-
tion gestures.

We used touch input as the baseline in the usability study (Sec-
tion 5). In addition to the standard interaction method, there are
some techniques based on commercially available devices, such as
capacitive screen-based interaction (e.g., Pre-touch [27], EarTouch
[67]), camera-based interaction (e.g., Lip-interact [62], FrownOn-
Error [74]) and microphone-based interaction (e.g., Siri, EarBuddy
[71]). HulaMove adds a new form of technique to this kind.

6.3 Limitation and Future Work
There are some limitations of our work. First, there are more as-
pects worth exploring in the design space. Other than the shift-
ing distance mentioned in Section 6.2, the combination of shifting
and rotating gestures, the speed and repetition of gestures, and
the movement trajectory are all potential aspects for enriching
HulaMove. We plan to investigate more of the design space in fu-
ture work. Second, in the usability study, we only evaluated our
system when participants were actively using waist gestures for
interaction. Although we also tested noise robustness to some ex-
tent since non-gesture periods were inherently part of the study,
participants did not verify detection errors/successes during daily
routines. The testing results in Section 4.4 show that our system
is robust to noise and the false positive rate is low. But the robust-
ness in more general scenarios remains to be validated in the fu-
ture. Moreover, comparing HulaMove against other eyes-free and
hands-free interaction techniques – such as foot interaction [54] –

is meaningful future work. It can help future researchers and de-
signers identify the appropriate and efficient interaction methods
in different situations. Third, our final goal is to deploy HulaMove
on the phone. We plan to compile the machine learning models to
the mobile version so that it can be run completely on the phone.
The system delay due to the waiting for extra negative windows
needs to be optimized by improving our algorithm to provide a
smooth and quick system response, e.g., by narrowing down the
time window or shortening the step size. We also plan to reduce
the sampling rate on the IMU to save battery life. Its impact on
model accuracy will need to be further investigated.

7 CONCLUSION
We propose HulaMove, a novel interaction technique that lever-
ages waist movement as a new hands- and eyes-free input method.
Through a study involving a series of target acquisition and confir-
mation tasks, we finalized the design space of waist interaction.We
found that users could easily and quickly distinguish eight shift-
ing directions and two rotating directions, and that quick return
was the optimal confirmation technique for HulaMove. We then
developed an algorithm and a real-time system that can detect and
recognize waist gestures from the IMU signals of a phone. With
a quick calibration stage performing four gestures, the algorithm
adapted to different phone positions and orientations, and trans-
formed the IMU signals to align to human body coordinates. Our
hierarchical tree-CNNmodel robustly detectedwaist gestures with
an accuracy of 97.5%. Finally, we evaluated our system in both
physical world and VR scenarios. Our results indicated thatHulaM-
ove significantly reduced the interaction time by 41.8% compared
to a touchscreen method. Moreover, participants reported better
user experience and higher presence in VR, and indicated a will-
ingness to use waist interaction during their daily routine. Overall,
HulaMove can provide an additional input channel when users’
eyes and/or hands are busy, accelerate users’ daily operations, and
augment their immersive experience in AR/VR.
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