## A RAPID TOUR OF MY EXPLORATIONS IN E-TEXTILES





PAUL G. ALLEN SCHOOL of computer science & engineering

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

UNIVERSITY of WASHINGTON



### FALL 2013 DC MAKERFAIRE



HCIL

### SUMMER 2018 SEATTLE ARBORETUM

MAKEABILITY LAB

NAVEABILITY LAB

ABILITY LAB

### **Our Mission** Design, Build, & Study Interactive Tools & techniques to address Pressing Societal Challenges



"Joy is a well-made object, equaled only to the joy of making it." -a Canadian Native American tribe saying, as quoted by <u>Mark Fraunfelder</u> (author, co-founder of <u>BoingBoing</u> (A), & editor of <u>MAKE</u> <u>Magazine</u> (A)

#### Preamble

This class is about making, being creative, taking risks. We will make to learn and learn to make. We will use materials to help us think and to push our own boundaries of what interactive computing is and could be. I taught this class once before: <u>http://cmsc838f-f12.wikispaces.com</u>. It was, by most accounts, a success (I think!). I learned a lot. The class learned a lot. Most importantly, along the way, we had *fun* together, we *made* interesting things, and we *helped* each other (peer learning ftw).

As another indicator of success, the aforementioned <u>Fall2012</u> class generated one MS thesis topic, one PhD thesis topic, and two publications (with more to come!). In addition, the instructables posted for the final project have garaged over 74.265 views and have been favorited 317 times (as of Jan. 2014) including HandSight & (9.330 views)

Course Pages Home Schedule Resources HCIL Hackerspace

Individual Assignments IA01 Background Survey - 1/29 & IA02 Arduino Graph - 2/13 IA03 Partner Eval for MPA01 - 3/10 & IA04 Partner Eval for MPA02 - 4/02 & IA05 Partner Eval for MPA03 - 4/21 &

Mini-Project Assignments MPA01 Input Inventions - 3/3 MPA02 High-Low Tech - 3/28 MPA03 Kinects & Motors - 4/18

Semester Project Assignments SPA01 Project Pitch SPA02 Project Presentation SPA03 Project Instructable SPA04 Project Video SPA05 Project Artifact

#### Reading Assignments

RA01 Tangible Bits - 1/29 원 RA02 Arduino Intro - 2/3 원 RA03 Electricity Intro - 2/13 원 RA04 Switches (p 39-59) - 2/19 원 RA05 Input Technology - 2/26 원 RA05 Sensor-Based Input - 2/26 원 RA06 Prototyping 3/5 원

### FABRIC MOUSE TOUCHPAD

BY PETER ENNS & CHRIS IMBRIANO, SPRING 2014



## MUSICAL SPAGHETTI MADNESS by Richard Johnson, Spring 2014



### WHAT ARE? ELECTRONIC TEXTILES

E-textiles (or smart textiles) are fabrics that contain electronic components—even small computers embedded within them

#### WRECKING CREW ORCHESTRA CHOREOGRAPHY LEAD BY YOKOI

Source: http://youtu.be/6ydeY0tTtF4

#### WRECKING CREW ORCHESTRA CHOREOGRAPHY LEAD BY YOKOI

Source: http://youtu.be/6ydeY0tTtF4

#### WRECKING CREW ORCHESTRA CHOREOGRAPHY LEAD BY YOKOI

.

Source: http://youtu.be/6ydeY0tTtF4

#### INTERACTIVE WALL HANGING

Designers: Jie Qi & John Clifford



#### PILEUS: THE INTERNET UMBRELLA

Designers: Sho Hashimoto & Takashi Matsumoto



### Flutter

Designers: Halley Profita, Nicholas Farrow, Nikolaus Correll



Flutters in direction of sound



### ELECTRO-MECHANICAL DRESS Designer: Hussein Chalayan



Some of our **e-textile** projects...



**SOCIAL FABRIC FITNESS** [CHI'14]



[CHI'14]



**BODYVIS** [IDC'13, CHI'15 Honorable Mention, ICLS'16, IDC'16, CHI'17, ICLS'18]



MAKERWEAR [IDC'15, CHI'16 Best Poster, CHI'17 Best Paper]

## HEALTH & WELLNESS SOCIAL FABRIC FITNESS

With Matt Mauriello and Michael Gubbels



### What if...

our clothes revealed information about our exercise? How would this change the fitness experience? For good or bad?

**SOCIAL FABRIC FITNESS** [CHI'14]

7 runkeeper



### Everyone. Every run.

Runkeeper is a top running app and a community that helps people get out the door and stick with running.

Sign Up for Free

Learn More



#### 50 million runners strong

Welcome to the community!



Jordan, 24 Waterlooville, U.K.

"I love that I can look through my Runkeeper app to see the progress I have made."



Kaylyn, 26 Cambridge, MA

"I love how user friendly Runkeeper is. From training plans to workouts, it makes organizing my runs a breeze."



Derek, 45 Lexington, VA

"Runkeeper helps me set and reach my goals, motivating me to stay ahead of my family history of poor health."





## social fabric fitness

- top at the

## SOCIAL FABRIC FITNESS TECH MVPS

2

14 ME # 19 10

SOLDENLESS

1

### social fabric fitness TECH MVPS

| -   | - | - |  |   |  |   |   | 12 |   | - |   |     | 100 | 201 |   |
|-----|---|---|--|---|--|---|---|----|---|---|---|-----|-----|-----|---|
| 1.2 |   |   |  | 0 |  | 9 | 9 |    |   |   |   |     |     |     | 0 |
|     | 2 |   |  |   |  |   |   |    |   |   | 6 |     | 9   |     | - |
| 12  |   | 9 |  |   |  |   |   |    |   |   |   |     |     |     | 8 |
|     |   |   |  |   |  |   |   |    |   |   |   | 90  |     |     |   |
|     |   |   |  |   |  |   | 9 | 8  | - |   |   | 180 |     |     |   |

2

0

0

# SOCIAL FABRIC FITNESS MATERIAL EXPLORATIONS

DOLL





## SOCIAL FABRIC FITNESS **PROTOTYPE DISPLAYS**



### We created **three prototypes**, which differed in display technology, resolution, viewability, weight

#### **PROTOTYPE #1**

### **CUSTOM FLEX PCB + LED MATRIX DISPLAY**



#### PROTOTYPE #2

### **FLEX E-INK DISPLAY**

DISTANCE 10.4 miles Viewable in direct sunlight & wide angles

**PROTOTYPE #3** 

## FLEX E-INK DISPLAY

32x16=512 "pixels"
# SOCIAL FABRIC FITNESS PILOT TESTS

# SOCIAL FABRIC FITNESS PILOT TESTS

.....

# SOCIAL FABRIC FITNESS **PROTOTYPE DISPLAYS**



Prototype #3 performed best in our pilots

# social fabric fitness DISPLAY TESTS

System Status: Successfully Running Received Broadcast (1.00 sec(s) ago Average Broadcast Rate: 229809732.33 sec(s)

- 0



Start

## SOCIAL FABRIC FITNESS





Wirelessly transmits via Bluetooth



# social fabric fitness SOCIAL GOAL VIS

ы



### 10 Groups: 52 runners

Avg Group Size: 5

Avg Age: **40.7** 

Avg Target Pace: 10:14

Avg Distance:

3.5 mi

### SOCIAL FABRIC FITNESS RACE DEPLOYMENTS



Male, 34 Target Pace: 6:10 County 8K Female, 33 Target Pace: 8:20 County 8K

Male, 26 Target Pace: 7:45 Labor Day 10K Male, 18 Target Pace: 8:30 Labor Day 10K



"It made me more aware of our pacing and kept me more focused on the run." –P4

> PACE 11.1

"It motivated me to go faster than the pace displayed." –P17

> We don't whine We're fit and strong But...a marathon is mighty long!



"It made me run faster because my performance was on display"

Gold medal!

Step Away from Cancer 5K Run/Walk

bames.

Prevent cancer

Potential Dichotomy Increased motivation vs. increased anxiety

SFF Externalizes Performance





**SOCIAL FABRIC FITNESS** [CHI'14]



[CHI'14]



**BODYVIS** [IDC'13, CHI'15 Honorable Mention, ICLS'16, IDC'16, CHI'17, ICLS'18]



MAKERWEAR [IDC'15, CHI'16 Best Poster, CHI'17 Best Paper]

# FUN/SILLY **I LIKE THIS SHIRT**With Ladan Najafizadeh and Seokbin Kang



[CHI'14]

## What if...

we translated the dynamics of lightweight social interactions that arose in social media to the physical world?

#### **f** Search for people, places and things

 $\mathbf{w}$ 

20+

1



Jon Froehlich Edit Profile

News Feed
 Messages
 Events

#### GROUPS

- Arts District Hyatts... 20+
- Workshop on Incon... 6
- CHI2015 in Seoul 20+
- Rersonal Informatics 13
- NSF CISE 2012 C... 14
- A dorkbot seattle 20+
- Mobile Living Labs'...
- Manage Your Groups
- ∓ Create Group
- Find New Groups

#### FRIENDS

- Vashington, Distric... 16
- 🚖 University of Washi...
- 🚖 University of Califo...
- 💼 HCIL, UMCP
- ᡖ Microsoft Research
- 💼 Intel Research
- 💼 Intel Research

.....





Reposted my anonymous prof yaks on the UW campus and they were all immediately downvoted. I guess UW students don't want faculty in their Yik Yak. I blame James Fogarty

#### Like · Comment

🖒 James Fogarty, Julie Kientz, Meredith Ringel Morris and 9 others like this.

James Fogarty Maybe they just don't like reposts?



Sarita Yardi Schoenebeck Well one of them called me a liar before it was downvoted. A skeptical bunch!



Julie Kientz Well, if you were claiming to be a UW prof they weren't wrong... Maybe they could smell the wolverine blood in your post 🙂



Write a comment...



Excited to give my featured talk at #NSTA14 about @I\_UMD work in informal science learning. Come by at 12:30: http://t.co/soE5VsLDff



16 1 event invite

Jon Home

Q

0 🙂

#### 📅 Amanda Marisa Williams and 1 other

Ŧ

#### TRENDING

- Michael Dukakis: Former presidential candidate testifies for defendant in trial linked to Boston Marathon bombing
- Selena Gomez: Boom! Selena Gomez Puts Her Grown-Up Haters In Their Place
- Apple Inc.: Company unveils thinner iPads, new Mac operating system and 'Retina 5K' high-res display at live event

See More

English (US) · Privacy · Terms · Cookies · More • Facebook © 2014

#### 1 Chat (21)









### es: a Playful Concept of ction

rvices using Wi-Fi Direct d friends and strangers ollaborative Video Challenges





#### Future work

- Implementation of the prototype is in progress A large-scale user study will be organized with it in order to understand its user experience and
- social impact More concepts for proximity-based playful so interaction will be researched

nikova, Thomas Olsson land

















**SOCIAL FABRIC FITNESS** [CHI'14]



[CHI'14]



**BODYVIS** [IDC'13, CHI'15 Honorable Mention, ICLS'16, IDC'16, CHI'17, ICLS'18]



MAKERWEAR [IDC'15, CHI'16 Best Poster, CHI'17 Best Paper] STEM EDUCATION
BODYVIS

With Tamara Clegg, Leyla Norooz, Seokbin Kang, and many others



## How can we...

design wearables that use the human body and physical activity as a platform for experimentation & scientific inquiry?

**BODYVIS** [IDC'13, CHI'15 Honorable Mention, ICLS'16, IDC'16, CHI'17, ICLS'18] "Does my heart beat faster when running vs. reading a book? Why?"

> "How does my breathing rate compare to my classmate's and why may this be?"

"How does food travel through my body?"



# BODYVIS PROTOTYPES **BODYVIS PROTOTYPES**



### **PROTOTYPE 1: MID-FI**

Stuffed fabric organs Heartrate Only LEDs, EL-Wire Arduino Uno

PROTOTYPE 2

Improved Anatomy Heartrate, Breathing LEDs Lilypad Arduino



### **PROTOTYPE 3**

Labeled, Removable Anatomy Heartrate, Breathing, Digestion LEDs, Sound, Touchscreen Arduino Uno, Smartphone



### **PROTOTYPE 4: HI-FI**

Added Organs (*e.g.*, Bladder) Heartrate, Breathing, Digestion LEDs, Sound, Haptics, Touchscreen Arduino BLE Mini, Smartphone

# BODYVIS PROTOTYPES BODYVIS PROTOTYPES







### **PROTOTYPE 2** Improved Anatomy Heartrate, Breathing LEDs Lilypad Arduino



### **PROTOTYPE 3**

Labeled, Removable Anatomy Heartrate, Breathing, Digestion LEDs, Sound, Touchscreen Arduino Uno, Smartphone



### **PROTOTYPE 4**

Added Organs (*e.g.*, Bladder) Heartrate, Breathing, Digestion LEDs, Sound, Haptics, Touchscreen Arduino BLE Mini, Smartphone Optical heart rate sensor



100


# BODYVIS PROTOTYPES BODYVIS PROTOTYPES FOUR GENERATIONS







#### **PROTOTYPE 2** Improved Anatomy Heartrate, Breathing LEDs Lilypad Arduino



#### **PROTOTYPE 3**

Labeled, Removable Anatomy Heartrate, Breathing, Digestion LEDs, Sound, Touchscreen Arduino Uno, Smartphone



#### **PROTOTYPE 4**

Added Organs (*e.g.,* Bladder) Heartrate, Breathing, Digestion LEDs, Sound, Haptics, Touchscreen Arduino BLE Mini, Smartphone







### BODYVIS **SENSING SYSTEM**











Wirelessly transmits via BLE





#### **ZEPHYR BIOHARNESS 3**

Worn directly on skin Senses heart, breathing, movement

#### SAMSUNG GALAXY S4 MINI

Serves as stomach Processes physiological data Plays sound & vibrates

#### **REDBEARLAB BLE MINI ARDUINO**

Sewn into shirt Directly wired to LEDs, Vibro-motors, digestion button, etc.

## **OVERALL REACTIONS**



## **OVERALL REACTIONS**



### **BODYVIS INTERACTIONS**



unning

Dancing

tim

### **UNEXPECTED FINDING**







**SOCIAL FABRIC FITNESS** [CHI'14]



[CHI'14]



**BODYVIS** [IDC'13, CHI'15 Honorable Mention, ICLS'16, IDC'16, CHI'17, ICLS'18]



MAKERWEAR [IDC'15, CHI'16 Best Poster, CHI'17 Best Paper]

## STE(A)M EDUCATION

With Majeed Kazemitabaar and many others



#### MAKERWEAR [IDC'15, CHI'16 Best Poster, CHI'17 Best Paper]

### How can we...

enable young children to build their own interactive wearables?





See: Buechley & Hill, 2010; Kafai, Lee, et al., 2014; Kafai, Fields, & Searle, 2014

### MAKERWEAR INTRODUCTION CURRENT WEARABLE TOOLKITS

| File Edit Sketch Tools Help        |                     |              |         |          |                   |   |
|------------------------------------|---------------------|--------------|---------|----------|-------------------|---|
|                                    |                     |              |         | <b>9</b> |                   | 2 |
| Blink§                             |                     |              |         |          | 10-               | 2 |
| /*                                 |                     |              |         | ^        | 22/               |   |
| * LilyPad sample code, blin        | uk an LED attached  | to pin 13    |         |          | 5/1               |   |
| */                                 |                     |              |         |          |                   |   |
|                                    |                     |              |         |          |                   |   |
| // the setup function runs         | once when you pres  | S            |         |          |                   |   |
| // reset or power the boar         | 1                   |              |         |          |                   |   |
| <pre>void setup() {</pre>          | 12 ag an output     |              |         |          |                   | R |
| nipMode(13 OUTPUT).                | i is as an output.  |              |         |          |                   | C |
| }                                  |                     |              |         |          |                   |   |
|                                    |                     |              |         |          |                   |   |
| // the loop function runs (        | over and over again | forever      |         |          |                   |   |
| <pre>void loop() {</pre>           |                     |              |         |          |                   |   |
| <pre>digitalWrite(13, HIGH);</pre> | // turn the LED o   | n via voltag | re HIGH |          |                   |   |
| delay(1000);                       | // wait for a sec   | ond          |         |          |                   |   |
| <pre>digitalWrite(13, LOW);</pre>  | // turn the LED o   | ff via volta | uge LOW |          |                   |   |
| delay(1000);                       | // wait for a sec   | ond          |         |          |                   |   |
| }                                  |                     |              |         |          |                   |   |
|                                    |                     |              |         | ~        |                   |   |
| <                                  |                     |              |         | >        |                   |   |
|                                    |                     |              |         |          | 4. 30 -           |   |
|                                    |                     |              |         |          | The second second |   |
|                                    |                     |              |         |          |                   |   |
|                                    |                     |              |         |          |                   |   |
|                                    |                     |              |         |          |                   |   |

EMBEDDED PROGRAMMING



**BASIC CIRCUIT & ELECTRONICS KNOWLEDGE** 



MANUAL SKILLS LIKE SEWING / SOLDERING



## THE MAKERWEAR SYSTEM

https://github.com/MakerWear

### MAKERWEAR SYSTEM TANGIBLE MODULES

6

3

64

Sninne

10

PUG1

inf zensor

 $\langle \mathcal{S} \rangle$ 

111

theil .

ower



### MAKERWEAR SYSTEM MAGNETIC SOCKET MESH





•











# MAKERWEAR SYSTEM 5 MODULE TYPES

Sense & translate physical phenomena into analog signals

**SENSORS** 

Provides **power** to all connected modules

POWER

**Transform** signals into other types of signals

MODIFIERS

Translate signals into perceptual forms

**ACTIONS** 

MISC Miscellaneous (*e.g.,* DIY module)

### MAKERWEAR SYSTEM **MODULE LIBRARY: 33 MODULES**

### **12 SENSORS**

Distance

**Light Sensor** 







**Motion Detector** 



**Tilt Sensor** 



Impact Sensor Color Detector







**Button** 

**Temperature Sound Sensor** 



**Sunlight Detector** 

Receiver







Sender

Number



Vibration



**Sound Maker** 

### **7 MODIFIERS**





OH

Counter

Inverter

**Volume Knob** Sine Wave







**Square Wave** 





**Power** 





Wire Start







**DIY Electronic** 







Light Bar

**Green Light** 

Blue Light

**Red Light** 

9 ACTIONS





MultiColor Light **Spinner** 



Threshold



Fade













#### Motion-reactive clothes!





Now with fade effect







### We can create a **diverse** set of designs **tangibly**

# **"AUTO-HEADLAMP HAT"**


## **"CHAMELEON CLOTHES"**



## **"LASER TAG ARMBAND"**

When button pressed, shoots "laser" (IR beam) and turns on blue LED



### MAKERWEAR EXAMPLES "LASER TAG ARMBAND"

#### MAKERWEAR EXAMPLES "LASER TAG ARMBAND"

## **Imagine that...** you also want to track the number of times you've been "hit" by a laser.

**Now imagine that...** you want to add in an "end game" condition that activates an alarm when a max hit count is reached.



## MAKERWEAR WORKSHOPS

田

耕

ANIN

## MAKERWEAR FINDINGS OVERALL

Highly engaged in making

#### Wide variety of designs

Applied computational thinking









## MAKERWEAR FINAL PROJECTS WHAT DID CHILDREN MAKE?



## MAKERWEAR FINAL PROJECTS WHAT DID CHILDREN MAKE?



#### MAKERWEAR FINAL PROJECT "SUPER NINJA"

UP MARFURU COUNT

Daniel, Age 7

GREATUTURES START HERE!

CHARACTER & LEADERSHIP O

TO EDUCATION & CAREERS



### **SUPER NINJA**

Maker: Daniel, Age 7 9 modules: 5 actions, 2 misc, 1 sensor 2 socket meshes 2 lo-fi pieces



**Red Light** Wire End Spinner

## MAKERWEAR FINAL PROJECTS WHAT DID CHILDREN MAKE?



### MAKERWEAR FINAL PROJECT "MAGIC POKÉMON"

Austin, Age 9

C





## **MAGIC YVELTAL POKÉMON**

Maker: Austin, Age 9 14 modules: 9 actions, 2 sensors, 1 modifier 2 socket meshes 3 lo-fi pieces + pokemon







## MAKERWEAR FINAL PROJECTS WHAT DID CHILDREN MAKE?



### MAKERWEAR FINAL PROJECT "SNART LACROSSE STICK"

Series 1

Sarah, Age 9

KEEP

GOING





### **SMART LACROSSE STICK**

Maker: Sarah, Age 9 8 modules: 6 actions, 1 sensor 1 socket mesh 3 lo-fi pieces + lacrosse stick



# MAKERWEAR FINAL PROJECT "NEXTGEN RUNNING CLOTHES"

Amelia, Age 10





### NEXT GENERATION RUNNING CLOTHES

Maker: Amelia, Age 10 40 modules: 25 actions, 3 sensors, 5 modifiers 4 socket meshes; 2 lo-fi pieces

#### **MOTION-REACTIVE LIGHT-UP SAFETY HAT & VEST**





### NEXT GENERATION RUNNING CLOTHES

Maker: Amelia, Age 10 40 modules: 25 actions, 3 sensors, 5 modifiers 4 socket meshes; 2 lo-fi pieces





### NEXT GENERATION RUNNING CLOTHES

Maker: Amelia, Age 10 40 modules: 25 actions, 3 sensors, 5 modifiers 4 socket meshes; 2 lo-fi pieces

#### **"HEART TRACKER" ARMBAND**







E-TEXTILES ARE NOT JUST EMBEDDED ELECTRONICS IN CLOTHING, THEY ARE NEW OPPORTUNITIES TO AUGMENT AND TRANSFORM THE HUMAN EXPERIENCE

# A RAPID TOUR OF MY EXPLORATIONS IN E-TEXTILES









