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With UMD CS PhD Student Matt Mauriello

[UbiComp’13, CHI’15 Honorable Mention, HBI’16, CHI’17]





[CHI’13 Best Paper, CHI’14]





[IDC’13, CHI’15 Honorable Mention, ICLS’16, IDC’16, CHI’17]







How to… 
make the physical world more 

accessible for people with disabilities



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13 Best 
Paper, UIST’14, TACCESS’15, SIGACCESS’15, CHI’16] 

[ACVR’14, ASSETS’15, GI’16, TACCESS’16] [CHI’15] 



How can we… 
develop scalable solutions that map the 

accessibility of urban infrastructure?

[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13 Best 
Paper, UIST’14, TACCESS’15, SIGACCESS’15, CHI’16] 



million U.S. adults 
have a mobility impairment

Source: US Census, 210



million use an assistive aid

Source: US Census, 210















Accessible infrastructure 

has a significant impact 

on the independence

and mobility of citizens
[Thapar et al., 2004 ; Nuernberger, 2008] 







The National Council on Disability noted that 

there is no comprehensive information on 

“the degree to which sidewalks are 

accessible” in cities.

National Council on Disability, 2007

The impact of the Americans with Disabilities Act: Assessing 

the progress toward achieving the goals of the ADA 



We are pursuing a two-fold solution



To develop scalable methods that mine massive repositories of online map 
imagery to identify accessibility problems semi-automatically



To create new accessibility-aware mapping tools that support people with 
disabilities and provide unprecedented views of urban accessibility



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, TACCESS’15] [SIGACCESS ‘15, CHI’16]



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, TACCESS’15] 

Is online map imagery a good 

source for accessibility data?

Can we create interactive tools 

that enable crowd workers to find 

accessibility problems?

How can we leverage 

computational techniques to 

scale our approach?



Jon Froehlich David Jacobs Kotaro Hara Manaswi Saha Jin Sun Ladan Najafizadeh Soheil Behnezhad

Vicki Le Robert Moore Christine Chan Daniil Zadorozhnyy Zach Lawrence Alex Zhang

Jonah Chazan Anthony Li Niles Rogoff

Maria Furman



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, TACCESS’15] 

Is online map imagery a good 

source for accessibility data?

Can we create interactive tools 

that enable crowd workers to find 

accessibility problems?

How can we leverage 

computational techniques to 

scale our approach?



How well do accessibility problems found in Google 

Street View correspond with the real world?



Washington DC & Seattle | 42 km surveyed Washington DC & Baltimore | 34 km surveyed



vs. vs.

ρ=
All results statistically significant at p < 0.001

ρ=



Consistent with literature, see: Odgers et al., 2012; Wilson et al., 2013; Kelly et al., 2013; Bader, et al., 2017



Google Street View is a reasonable proxy for 

studying the state of street-level accessibility



Is online map imagery a good 

source for accessibility data?

Can we create interactive tools 

that enable crowd workers to find 

accessibility problems?

How can we leverage 

computational techniques to 

scale our approach?
[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, TACCESS’15] 





1. Find & label problem



1. Find & label problem



1. Find & label problem
2. Categorize problem



1. Find & label problem
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1. Find & label problem
2. Categorize problem
3. Rate problem severity
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1. Find & label problem
2. Categorize problem
3. Rate problem severity
4. Submit work



1. Find & label problem
2. Categorize problem
3. Rate problem severity
4. Submit work

Receive another image to 
label & process repeats.



1. Verify label
2. Verify rating
3. Provide details



1. Create image dataset

2. Generate ground truth labels

3. Deploy our tools to crowd

4. Compare performance to ground truth



Baltimore





Sidewalk Ending

Object in Path

Surface Problems

Missing Curb Ramps

No Problems



1. Create image dataset

2. Generate ground truth labels



Bob Sue Alice

Object in Path

Object in Path

No Curb Ramp

Bob’s Labels

Object in Path

Object in Path

Sue’s Labels

Object in Path

Object in Path

No Curb Ramp

Alice’s Labels

Object in Path

Object in Path

No Curb Ramp
}

Majority 
Vote

Researcher Ground Truth



1. Create image dataset

2. Generate ground truth labels

3. Deploy our tools to crowd







1. Create image dataset

2. Generate ground truth labels

3. Deploy our tools to crowd

4. Compare performance to ground truth



Are crowd workers capable of finding 

accessibility problems in online map imagery?



With one labeler per image



With one labeler per image

78% 81%

Multiclass Overall Binary Overall
Sidewalk Ending

No Curb Ramp

Surface Problem

Object in Path

No Problem

No Problem

Problem



(i.e., tendency towards false positives) (e.g., misunderstanding, malevolence) (i.e., ambiguous problem category)
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With basic quality control measures, minimally trained crowd 

workers can find accessibility problems with an accuracy of ~93%



Relied purely on manual labor. Can we do better?



Is online map imagery a good 

source for accessibility data?

Can we create interactive tools 

that enable crowd workers to find 

accessibility problems?

How can we leverage 

computational techniques to 

scale our approach?
[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, TACCESS’15] 



Tohme
遠目 Remote Eye・



遠目Remote Eye
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Web Scraper
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Street Dataset
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3D Point-cloud Data

Top-down Google Maps Imagery

GIS Metadata
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<GSV image age/>

<Street & city names/>

<Intersection topology/>

Street View images
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Top-down map images
GIS metadata

Scraped Area: 11.3 km2
Urban Residential



遠目Remote Eye

svCrawl

Web Scraper

Street Dataset

Street View images
3D-depth maps
Top-down map images
GIS metadata

<Intersection topology/>

Scraped Area: 11.3 km2

D.C. Baltimore Los Angeles Saskatoon

Urban Residential

1,086
intersections

2,877
curb ramps

647
missing 

curb ramps

Dataset Statistics

2.2 yrs (SD=1.3)

average GSV image age
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Street Dataset

down map images

Verifiers cannot fix false negatives
(i.e., they cannot add new labels)



svCrawl

Web Scraper

Street Dataset

遠目Remote Eye

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Street View images
3D-depth maps
Top-down map images
GIS metadata
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遠目Remote Eye

svDetect

Automatic Curb 

Ramp Detection

1.Deformable part model (DPM)

2.Post-processing DPM

3.SVM-based classifier



Root filter Parts filter Displacement cost

Root filter Parts filter Displacement cost

Felzenszwalb et al., CVPR’08, CVPR’10



Root filter Parts filter Displacement cost



True Positives 1

False Positives 12

False Negatives 0
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True Positives 1
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True Positives 1

False Positives 3

False Negatives 0
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True Positives 6

False Positives 4

False Negatives 1



svCrawl

Web Scraper

Street Dataset

遠目Remote Eye

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Street View images
3D-depth maps
Top-down map images
GIS metadata

svDetect

Automatic Curb 

Ramp Detection



svControl

Automatic 

Task Allocation

Curb Ramp Detector Output (16 Features)

Raw # of bounding boxes
Descriptive stats of confidence scores 
Descriptive stats of XY-coordinates 

3D-Point Cloud Data (5 Features) 
Descriptive stats of depth information 
(e.g., average, median, variance) of 
pixel depth

Intersection Complexity (2 Features)

Cardinality (# of connected streets)
Amount of road

Binary classifier trained to predict occurrence of false negatives from svDetect stage



svCrawl

Web Scraper

Street Dataset

遠目Remote Eye

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Street View images
3D-depth maps
Top-down map images
GIS metadata

svDetect

Automatic Curb 

Ramp Detection

Predicted
CV failure

Predicted
CV success



Correct false positives from computer vision



Correct false positives from computer vision

Playback Speed: 2x



Predicted
CV failure

Predicted
CV success

svCrawl

Web Scraper

Street Dataset

遠目Remote Eye

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Street View images
3D-depth maps
Top-down map images
GIS metadata

svDetect

Automatic Curb 

Ramp Detection





Playback Speed: 2x



1. Generate ground truth labels

2. Train computer vision & task controller

3. Deploy Tohme to Mechanical Turk

4. Compare Tohme to baseline
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Automatic Curb 

Ramp Detection

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Simulated perfect task controller



1. Improving detection algorithms

2. Project Sidewalk

3. New workflows & interfaces

4. Developing new assistive technologies



Recently accepted to CVPR’17

Context map

Input image



















Sept 2007 Jul 2009

May 2014 July 2015

June 2011

Manual Label



New models & viz of city accessibility Cross-city comparison toolsSmart routing for people with impairments





[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13 Best 
Paper, UIST’14, TACCESS’15, SIGACCESS’15, CHI’16] 

[ACVR’14, ASSETS’15, GI’16, TACCESS’16] [CHI’15] 



[ACVR’14, ASSETS’15, GI’16, TACCESS’16] 
Paper, UIST’14, TACCESS’15, SIGACCESS’15, CHI’16] 

[CHI’15] 

How can we… 
we sense & feed back non-tactile 

information about the physical world 

as it is touched?



For people with visual impairments, touch is a primary 

means of acquiring information about the world.

Prior work in neuroscience and psychoperception has 

found that blindness enhances tactile acuity (e.g., Goldreich

& Kanics, 2003; Norman & Bartholomew, 2011)

However, fingers can only feel tactile phenomena—bumps, 

temperature, shape—and there is much richness in the 

world that is non-tactile.

In our work, we are exploring:
How to computationally augment a blind person’s sense of 
touch to interpret non-tactile information about the world?



Imagine, for example, gliding your finger along printed text 

and hearing the words read back to you in real-time,
feeling the shape of a bar graph in a book or newspaper,
or touching a piece of clothing and hearing a description 

of the underlying fabric 



Sensing + feedback for non-

tactile information about the 

physical world as it is touched









For processing, power, 
additional sensing & feedback



[ACVR’14, TACCESS’15] In progress [ICPR’16] [TACCESS’15, GI’16]









TACCESS’16



TACCESS’16

Absolute error from line center

Absolute error from line center

Z19=-2.374, p=.018, r=.54



GI’16





GI’16

Directional movement error

t17=−1.95, p = .034, d = 0.46 

Directional movement error

8-motor wristband resulted in 

9% lower movement error



Paper in preparation

Start

End

Red & green show 
user’s finger trace

Start

End



ICPR’16, two papers in submission







Jon Froehlich Leah FindlaterRama Chellappa David Ross Lee Stearns Uran Oh Jonggi Hong

Ruofei Du Anis Abboud Meena Sengottuvelu Harry Vancao Virginia Melandri Eric Lancaster

Tony Cheng Victor Chen Catherine Jou

Alex Medeiros

Mandy Wang Ji Hyuk Bae Jessica Yin Chuan Chen



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13 Best 
Paper, UIST’14, TACCESS’15, SIGACCESS’15, CHI’16] 

[ACVR’14, ASSETS’15, GI’16, TACCESS’16] [CHI’15] 



[CHI’15] 

How can we… 
we sense & visualize sound information on 

an HMD to improve sound awareness for 

people who are deaf or hard of hearing?











True wearable design

Precise localization & sound 

separation algorithms

Oral conversation support

Visualization design

Collaborators: Leah Findlater, Ramani Duraiswami, Dmitry Zotkin, Christian Vogler, & Raja Kushalnager



Jon Froehlich Leah Findlater Ramani Duraiswami Dmitry Zotkin Christian Vogler Raja Kushalnagar

Dhruv Jain

Jamie Gilkeson Benjamin Holland







National Research Council, A Framework for K-12 Science Education, 2012



See: Barton, et al., 2008; Naiser & Hand, 2008; Kafai, et al., 2014; 





How can we… 
design wearables that engage and scaffold children in life-

relevant, personally meaningful STEM learning experiences.



Unprecedented amount of data

Inherently personalized & life-relevant

Can go where the child goes

Engages the body in learning (i.e., “embodied learning” 

Pecher, 2005; Lindgren, 2013; Lee, 2014)



[IDC’15, CHI’16 Best Poster, CHI’17 Best Paper] [IDC’13, CHI’15 Honorable Mention, ICLS’16, IDC’16, CHI’17] 



Complex Problems





[IDC’13, CHI’15 Honorable Mention, ICLS’16, IDC’16, CHI’17] 

How can we… 
design wearables that use the human 

body and physical activity as a platform 

for experimentation & scientific inquiry?





Jon Froehlich Tamara Clegg Leyla Norooz Seokbin Kang Virginia Byrne Rafael Velez

Monica Katzen Angelisa Plane Vanessa Oguamanam Anita Jorgensen

Sage Chen

Thomas Outing

Amy Green





















Overall reactions

BodyVis interactions & experiments

Learning potential

Unexpected things



High Engagement



High Engagement



Dancing

Actively Engaging Body

Running Eating Jumping Jacks Resting



Pre- & Post-Questionnaires



Body Map Drawing: Before & After

Body map drawing method: Cuthbert, 2000; Garcia-Barros et al., 2011 



Body Map Drawing: Before & After

Included at 
least one 

new organ

Corrected 
positions of 

organs

Improved 
organ 

shapes



I now want to touch on two unexpected findings



Disembodied Use





IDC’16, CHI’17



How Does It Work?



[IDC’15, CHI’16 Best Poster, CHI’17 Best Paper] [IDC’13, CHI’15 Honorable Mention, ICLS’16, IDC’16, CHI’17] 



[IDC’15, CHI’16 Best Poster, CHI’17 Best Paper] 

How can we… 
enable young children to build their 

own interactive wearables?



Jon Froehlich Tamara Clegg Majeed Kazemitabaar Liang He

Katie Wang Alex Jiao Tony Cheng

Chloe Aloimonos

Thomas OutingJason McPeak





See: Buechley & Hill, 2010; Kafai, Lee, et al., 2014; Kafai, Fields, & Searle, 2014









Buechley, 2006; Davis, et al., 2013; DuMont & Lee, 2015; Dunne et al., 2015; Kafai et al., 2014; Katterfeldt et al., 2009; Ngai et 
al., 2013; Richard & Kafai, 2015; Searle, et al., 2014



How can we enable young children 

(elementary age) to design & build 

their own interactive wearables?

What do children want to build and 

how can we support these goals?

How does working with our tools & 

techniques impact skill development 

& perceptions of STEM?



Pilot 
Studies

Refinement
Design 
Probes

Refinement
Participatory 

Design

Ideation / 
Prototyping

Initial 
Ideation 

Single 
Session 

Workshops

Multi-
Session 

Workshops



Cooperative Inquiry

Cooperative Inquiry: Guha, Druin, & Fails, 2013



Initial Sessions



Follow-up Sessions



One slide on this
STEM Educators



React to body movement & physiology (e.g., heartrate)

Recognize gestures & physical actions (e.g., recognize a jump)

Support social interaction (e.g., vibrate when friend nearby)

Augment play experiences (e.g., freeze tag)

Respond to environment (e.g., increase visibility at night)



React to body movement & physiology 

Recognize gestures & physical actions 

Support social interaction

Augment play experiences 

Respond to environment

These are the key 

things that any 

wearable toolkit 

for children should 

support 



https://github.com/MakerWear
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input



output

input





Provides power to all 
connected modules

Sense & translate
physical phenomena 
into analog signals

Transform signals into 
other types of signals

Translate signals into 
perceptual forms

Miscellaneous
(e.g., DIY module)



Light Bar

Green Light

Blue Light

Red Light

MultiColor Light

Number

Sender

Yellow Light

Sound Maker

Spinner

Vibration

Rotator Power

Threshold

Fade

Square Wave

Counter

Inverter

Sine WaveVolume KnobMotion Detector

Impact Sensor

Tilt Sensor

Button

Light Sensor

Color Detector

Temperature

Distance Sunlight Detector

Receiver

Sound Sensor

Heartbeat DIY Electronic

Wire Start

Wire End

Bridge



SpinnerVibrationRotator

ThresholdFade Square WaveCounterInverter Sine WaveVolume Knob

Motion Detector

Impact Sensor Tilt Sensor

Color Detector TemperatureDistance Sunlight DetectorHeartbeat

Sender

ReceiverWire Start

Wire End

DIY Electronic

Bridge

Light Bar

Number

Sound Maker

Sound Sensor Light Sensor Single Light

MultiColor Light

Button



Temperature 
Sensor

Exposed electronic component

Laser cut module cover

Custom PCB with embedded
microcontroller & SMD 
components

Custom PCB with neodymium 
magnet & contact spring for 
socket connection





The number of sockets per mesh ranges from 14-23









Motion-reactive clothes!



Now with fade effect









We can create a diverse set of designs tangibly



Inverter

Power Light
Sensor

Yellow Light

Yellow Light

Yellow Light



Receiver

Color 
Detector

Power Distance 
Sensor

MultiColor
Light

MultiColor
Light

MultiColor
Light

Threshold



Receiver

When button pressed, shoots “laser” 
(IR beam) and turns on blue LED

When “hit” by IR 
beam, turns red



Receiver

Sets max hit count level

Tracks hit count

Flashes lights & 
plays sound when 
max hit count level 
reached

When button pressed, shoots “laser” 
(IR beam) and turns on blue LED

When “hit” by IR 
beam, turns red









32 children (16 female; ages 5-12; avg=8.3)

Two single-session workshops (N=13)

Three four-session workshops (N=19)

Workshops common method for e-textile studies. E.g., Buechley et al., 2006; Katterfeldt et al., 2009; Searle et al., 2014; Richard & Kafai, 2015; 



Group Ages (Avg) N (female)

Uses computer 
at least a few 
times a week

Has used a graphical 
programming system 
(e.g., Scratch)

Has used an electronic kit 
(e.g., Snap Circuits, Lego 
Mindstorms,  littleBits)

1 5-7 (6.0) 5 (5) 100% 40% 20%

2 8-12 (9.9) 8 (3) 88% 38% 50%

1 5-7 (6.3) 7 (3) 100% 57% 57%

2 8-9 (8.8) 6 (1) 83% 50% 66%

3 8-12 (10.2) 6 (4) 83% 83% 66%

Total 5-12 (8.3) 32 (16) 91% 53% 53%



Group Ages (Avg) N (female)

Uses computer 
at least a few 
times a week

Has used a graphical 
programming system 
(e.g., Scratch)

Has used an electronic kit 
(e.g., Snap Circuits, Lego 
Mindstorms,  littleBits)

1 5-7 (6.0) 5 (5) 100% 40% 20%

2 8-12 (9.9) 8 (3) 88% 38% 50%

1 5-7 (6.3) 7 (3) 100% 57% 57%

2 8-9 (8.8) 6 (1) 83% 50% 66%

3 8-12 (10.2) 6 (4) 83% 83% 66%

Total 5-12 (8.3) 32 (16) 91% 53% 53%



Post-study 
questionnaire

MakerWear 
introduction

Pre-study 
questionnaire

Building/playing 
with MakerWear

Design 
Challenge

Design 
Challenge



Design 
ChallengeIntroduce basic modulesIntro

Pre-study 
questionnaire

End-of-day 
questionnaire

Design 
Challenge

Introduce more advanced modules & 
concepts (e.g., inverters, branching)

“Fix-It” Design 
Challenge

End-of-day 
questionnaire

Design 
Challenge

Introduce lo-fi materials, communication 
modules, & advanced modifiers

Brainstorm & sketch 
project ideas

End-of-day 
questionnaire

Final project 
presentationsWork on final projects

“Fix-It” Design 
Challenge

Post-study 
questionnaire



Session video

Design challenge performance (Radar et al., 1997)

End-user creations (Duncan et al., 2014; Hansen et al., 2015)

Artifact-based interviews (Brennan & Resnick, 2012)

Pre & post-study questionnaires
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Highly engaged in making

Wide variety of designs

Applied computational thinking



MakerWear understanding & CT

What did children make?

Some unexpected things



MultiColor LightPower Light Sensor

Light Bar DistancePower

Volume Knob Yellow Light Yellow LightYellow LightPower

MultiColor LightPower Light Sensor

Light BarDistancePower

Volume KnobYellow Light Yellow Light Yellow LightPower

Fix this so the 
light responds 
to the sensor

Fix this so the 
lightbar responds 

to the sensor

Fix this so all light 
levels are controlled 
by the volume knob



MultiColor LightPower Light Sensor

Light Bar DistancePower

Volume KnobYellow Light Yellow Light Yellow LightPower

Youngest Middle Oldest

Youngest=6.3; Middle=8.8; Oldest=10.2 years old



Do these two designs behave differently? 

Youngest Middle Oldest

Youngest=6.3; Middle=8.8; Oldest=10.2 years old



Sequencing Sequencing Conditional Logic Conditional Logic

Middle & Oldest Groups Only

Youngest=6.3; Middle=8.8; Oldest=10.2 years old



Keisha, Age 6 Austin, Age 9

Omar, Age 6

LeShawn, Age 6 Sarah, Age 9

Kayla, Age 6

Tyrese, Age 5Justin, Age 8

Amelia, Age 10 Tina, Age 8



0

5

10

15

20

25

Youngest Middle Oldest

0

1

2

3

4

Youngest Middle Oldest

0

1

2

3

4

5

Youngest Middle Oldest

Youngest=6.3; Middle=8.8; Oldest=10.2 years old

0

0.5

1

1.5

Youngest Middle Oldest

0

1

2

3

4

Youngest Middle Oldest

0

1

2

3

4

Youngest Middle Oldest

Error bars are standard error





Volume Knob

Button

Motion Detector

Impact Sensor Tilt Sensor

Distance Light Sensor

Color Detector

Temperature

Sunlight Detector

Sound Sensor Heartbeat Sender

ReceiverWire Start

Wire End



I want to highlight a few projects that demonstrate the 

breadth of designs, the span of technical 

sophistication, & illustrate the aforementioned themes





Daniel, Age 7



Light Bar

Blue Light

Power

Impact Sensor

Wire Start

MultiColor Light

Wire EndRed LightSpinner

Maker: Daniel, Age 7

9 modules: 5 actions, 2 misc, 1 sensor

2 socket meshes

2 lo-fi pieces





Austin, Age 9





Maker: Austin, Age 9

14 modules: 9 actions, 2 sensors, 1 modifier

2 socket meshes

3 lo-fi pieces + pokemon

MultiColor Light





Sarah, Age 9





Maker: Sarah, Age 9

8 modules: 6 actions, 1 sensor

1 socket mesh

3 lo-fi pieces + lacrosse stick

Blue Light

MultiColor Light

Power

Distance Sensor

MultiColor Light

Sound Maker
Red LightRed Light



Amelia, Age 10





Maker: Amelia, Age 10

40 modules: 25 actions, 3 sensors, 5 modifiers

4 socket meshes; 2 lo-fi pieces

Wired 
Connection



Maker: Amelia, Age 10

40 modules: 25 actions, 3 sensors, 5 modifiers

4 socket meshes; 2 lo-fi pieces

Sound 
Maker

MultiColor
Light

MultiColor
Light

MultiColor
Light

Yellow 
Light

Blue Light

MultiColor
Light

Red 
Light

Vibration

MultiColor
Light

Wire
End

Power

Light
Sensor

Inverter

Motion
Detector

Wire Start

Wired 
Connection

Red Light

MultiColor
Light

MultiColor
Light

Vibration

MultiColor
Light

Green Light

Activate hat & vest only when it’s 
dark AND the wearer is moving 



Maker: Amelia, Age 10

40 modules: 25 actions, 3 sensors, 5 modifiers

4 socket meshes; 2 lo-fi pieces

Beeps & lights up on 
each heartbeat

Heartbeat 
Sensor

Power

Blue Light

Sound Maker

Counter

Counter

Number

Number

Counts heartbeats 
up to 99



Finally, some unexpected things



year old maker



year old maker



year old maker

“[he] hasn’t been captivated like that 

for any other activity in the museum”







Modules will be wirelessly programmable via a custom tablet programming interface



Children can program complex behavior via a novel machine learning interface





WE ARE CASA 

SOMOS CASA

Prince George’s County Public School System

STEM Masters in Education Program



Congressionally Directed Medical Research

NSF #1302338, Google, IBM
PI Froehlich, Co-PI David Jacobs

Google Faculty Research Award
PI Leah Findlater, Co-PI Froehlich 

Department of Defense CDMRP
PI Froehlich, Co-PIs Leah Findlater & Rama Chellappa

NSF #1441184
PI Froehlich, Co-PI Tamara Clegg

NSF CAREER #1652339
PI Froehlich 



All photos by Jon Froehlich or Makeability Lab students except

REUTERS/Muzaffar Salman
Found http://www.businessinsider.com/us-trusts-10-lessons-of-2013-2013-12

Unknown
Found https://chravellinx.wordpress.com/2014/12/15/11-dec-mantytie-valimotie/

Gettystock
Found http://www.huffingtonpost.com/2014/08/21/use-fitness-tracker_n_5697749.html

Electronic Fashion Camp by Amy Florence
Found https://www.flickr.com/photos/amypickup/sets/72157631039891148/with/7769553484/

LilyPad Arduino Interactive Pad by Agy Lee
Found https://youtu.be/agYGhwc3NOk

I Heart LilyPad Arduino by Rain Ashford
Found https://www.slideshare.net/Rainycat/i-lt3-lilypad-Arduino

Manual Sewing Skills by Leah Buechley
Found https://www.flickr.com/photos/leahbuechley/2595747031/

Example E-Textile Projects
Please see the respective PowerPoint slide in the notes section for attributions

Girls Make It
Found http://www.girlsmakeit.org/

Thinking Fabrics by Cindy Hu
Found http://ima.nyu.sh/documentation/author/yh1437/

Leaf by Thomas Helbig
Found https://thenounproject.com/search/?q=environmental+sustainability&i=120238

Health by Timothy Miller
Found https://thenounproject.com/search/?q=health&i=396737

Accessible Icon Project
Found http://accessibleicon.org/#use

Microscope 
Found https://thenounproject.com/search/?q=science&i=860760

http://www.businessinsider.com/us-trusts-10-lessons-of-2013-2013-12
https://chravellinx.wordpress.com/2014/12/15/11-dec-mantytie-valimotie/
http://www.huffingtonpost.com/2014/08/21/use-fitness-tracker_n_5697749.html
https://www.flickr.com/photos/amypickup/sets/72157631039891148/with/7769553484/
https://youtu.be/agYGhwc3NOk
https://www.flickr.com/photos/amypickup/sets/72157631039891148/with/7769553484/
https://www.flickr.com/photos/leahbuechley/2595747031/
http://ima.nyu.sh/documentation/author/yh1437/
https://www.flickr.com/photos/leahbuechley/2595747031/
https://thenounproject.com/search/?q=environmental+sustainability&i=120238
https://thenounproject.com/search/?q=health&i=396737
http://accessibleicon.org/#use
https://thenounproject.com/search/?q=science&i=860760
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