

Liang He

Huaishu Peng

Ondulé | Designing and Controlling 3D Printable Springs

Michelle Lin

Ravi Konjeti

François Guimbretière

Jon E. Froehlich

PAUL G. ALLEN SCHOOL **OF COMPUTER SCIENCE & ENGINEERING**

How can we embed springs in 3D-printable objects?

Making a spring man using our design tool...

Convert to spring	Change spring
Generated Ondule Units:	
Ondule Spring Customization	'n
Basic stiffness control	dvanced spring contro
Least stiff	
Wire Thinckness 1.6mm 1.6	
Tum Gap: 0.4mm 0.4	
Ondule Joint Constraints	
Individual Behavior	
C Linear Only	
O Twist Only	
O Bend Only	
Compound Behaviors	
C Linear + Twist	
Bend + Twist	
Include decorative spring	g layer
	Convert to spring Generated Ondule Units: Ondule Spring Customization

But let's take a step back... How can we add deformation to 3D printed objects?

Iwafune et al. SIGGRAPH ASIA'18

A Constant of the second secon

Telescoping Yu et al. SIGGRAPH'17

Here is a 3D printed version of the same telescope.

Joint Bacher et al. SIGGRAPH'12

Side View

Top View

C Disnep

But one of the most common deformable structures in manufacturing that has not been extensively studied is

Here is a 3D printed version of the same telescope

Fabrication

Heical Spring

Benefits of Helical Spring

compress extend

twist

bend

energy

Key Challenges

The mechanical performance of 3D-printed helical springs are not known Design, customize, and control spring deformation behaviors can be difficult

Research Questions

Do 3D printable springs follow mechanical theory?

How can we isolate the deformation behaviors in a spring?

How to lower the barrier to create and control springs in CAD design tools?

RQ1: Do 3D printable springs follow mechanical theory? Mechanical Experiments

Material Properties

Young's modulus (E) Shear modulus (G)

Spring Parameters

spring diameter (D) wire thickness (d) number of coil turns (N)

3D-Printed Spring Tensile Tests

Condition	Wire Thickness (mm)	Diameter (mm)	Length (mm)	Turn Number
Wire Thickness (<i>d</i>)	2, 3.4, 4.8, 6.2, 7.6	32	50	
Diameter (<i>D</i>)	4	25, 30, 50, 60	50	
Spring Length (<i>L</i>)	4	32	25, 45, 65, 85	
Turn Number (<i>N</i>)	4	32	50	4, 6, 8, 10

100% infill lines infill pattern 90° printing angle

17 3D-printed springs

- Experiment Results
- Theoretical Predictions

3D-Printed Spring Tensile & Torsion Test Results

Tensile Test Result

Torsion Test Result

The tensile and torsion behaviors of 3D-printed helical springs closely mirror theoretical predictions

RQ2: How can we isolate the deformation behaviors? Deformation Techniques

Ondulé Deformation Techniques

Individual Behavior

Prismatic Joint

Compound Behavior

Cylindrical Joint

Bend Only Chained Knuckle Joint

Bend + Twist Chained Ball Joint

Ondulé Deformation Techniques Compress + Extend Only: Prismatic Joint

Ondulé Deformation Techniques Twist Only: Revolute Joint

Ondulé Deformation Techniques Bend Only: Chained Knuckle Joint

Ondulé Deformation Techniques Linear + Twist: Cylindrical Joint

Ondulé Deformation Techniques Bend + Twist: Chained Ball Joint

Ondulé Decorative Spring

Original Model

Deformation Spring

Deformation + Decorative Springs

RQ3: How to lower the barrie in CAD design tools? Ondulé Design Tool

allows novice designers to add deformation behaviors to static 3Dprinted objects using embedded springs and joints.

RQ3: How to lower the barrier to create and control springs

Ondulé Design Tool

Convert to spring Generated Ondule Units: Ondule Spring Custo	Change sponted and a second	pring length	Spring Generation Panel
Wire Thinckness 3.0 Tum Gap: 4.0	1.6 3.2	Most stiff 7.6 30.4	Spring Stiffn Control Pane
 Ondule Joint Cons Individual Behavior Linear Only Twist Only Bend Only Compound Behaviors Linear + Twist Bend + Twist 	straints) mm (70.4%) n (31.3%)	Spring Beha Design Pane

Ondulé Design Tool Spring Generation

ff	Convert to spring	Change spring leng
	Generated Ondule Units:	
	Ondule Spring Customiza	tion
	Basic stiffness control	Advanced spring control
	Least stiff	M
	Wire Thinckness 3.0 1.6	7
Discontinuous Point Point Curve Segment Body Surface Medial Axis	disav	
Generate the medial	axis	
Calculate the size		

Ondulé Design Tool Spring Generation

H	Convert to spring	Change spring len
	Generated Ondule Units:	
	Ondule Spring Customiz	ation
	Basic stiffness control	Advanced spring control
	Least stiff	N
	Wire Thinckness 3.0 1.6	
Discontinuous Point Point Curve Segment Medial Axis	dis crv Body S	Surface Medial
Generate the medial	axis	Generate a Croato tho
Calculate the SIZE		

spiral deformation spring

Ondulé Design Tool Spring Generation

H	Convert to spring	Change spring len
	Generated Ondule Units:	
	Ondule Spring Customiz	zation
	Basic stiffness control	Advanced spring control
	Least stiff	N
	Wire Thinckness 3.0 1.6	
Discontinuous Point Sample Point		
Curve dis _{pt}	dis _{crv}	
Segment		
Body Surface Medial Axis	Body	Surface Medial
Generate the medial	axis	Generate a
Calculate the size		Create the
Sultuite the SIZE		

a spiral deformation spring

Convert to spring	Change
Generated Ondule Units:	
Ondule Spring Customizati	on
Basic stiffness control	Advanced sprin
Least stiff	
Wire Thinckness 1.6mm 1.6	
Turn Gap: 0.4mm 0.4	
Ondule Joint Constraint	s
Individual Behavior	
C Linear Only	
O Twist Only	
O Bend Only	
Compound Behaviors	
🔿 Linear + Twist	
O Bend + Twist	
Include decorative sprin	g layer

e spring length
ng control
Most stiff
7.6
100

Ondulé Design Tool Spring Stiffness Control

	G
	In O
	C
	Co C
the second secon	C

Ondule Spring Cust	omizati	ion			
Basic stiffness control	0	Advanc	ed spring	g contro	d
Least stiff					Most
Wire Thinckness 3.0	1.6				7.6
Tum Gap: 4.0	3.2				30.4
Ondule Joint Cor					
 ndividual Behavior Linear Only Twist Only Bend Only Compound Behaviors Linear + Twist Bend + Twist 	Max co Max ex Max los	ompress tension ad: 0.3	ion: 17 : 14.9 n 3 N	.0 mm (nm (31.3	70.4%) 3%)

ude decorative spring lay

lost stiff

1. Default Stiffness

2. Stiffness Adjustment Least stiff Most stiff Wire Thinckness 5.8 mm 1.6 7.6

control the spring stiffness

30.4

Least stiff Wire Thinck Sst 1.6 mm 1.6 Tum Gap: 2.8 mm 2. Ondule Joint Const Individual Behavio Linear Only Twist Only Bend Only Compound Behavior Linear + Twist Bend + Twist Include decorative spring layer

	Most stiff
	5.3
	21.3
ints	

Ondulé Design Tool Spring Deformation Behavior Design

	Ondule Sprin
	Basic stiffness
	Least stiff
	✓ Ondule Jo
	Individual Behavi
	Linear Only
	O Twist Only
	O Bend Only
	Compound Behav
	O Linear + Twis
Estat S	O Bend + Twist
	✓ Include de

Ondule Spring Cus	tomizati	ion		
Basic stiffness control	0	Advanced spring cor	ntrol	
Least stiff			N	
	1.6 —			
Ondule Joint Constraints				
Individual Behavior				
Linear Only				
O Twist Only				
O Bend Only	Мах со	mpression: 17.0 m	m (70	
Compound Behaviors	Max ex	tension: 14.9 mm (31.3%	
O Linear + Twist	Max loa	ad: 0.3 N sk		

nclude decorative spring layer

Joint Generation

1. Default Joint Design

2. Behavior Design

Max compression: 17.0 mm (70.4%) Max extension: 14.9 mm (31.3%) Max load: 0.3 N Lock

Ondulé Design Tool Spring Deformation Behavior Design

Ondule Joint Constraints				
Individual Behavior				
Linear Only				
O Twist Only				
O Bend Only	Max compression: 13.7 mm (51.3%)			
Compound Behaviors	Max extension: 25.1 mm (47.5%)			
O Linear + Twist	Max load: 0.1 N			
Bend + Twist	Lock			

Linear Only

✓ Ondule Joint Constraints			
la dividual Dahavian			
Individual benavior			
C Linear Only	(@),)		
O Twist Only			
Bend Only	Bending direct		
Compound Behaviors	Bending angle		
O Linear + Twist	17°		
O Bend + Twist			

Bend Only

Ondule Joint Constraints Individual Behavior Linear Only Twist Only Bend Only Max compression: 8.3 mm (31.3%) Max extension: 13.9 mm (26.3%) Max Load: 0.1N Compound Behaviors Linear + Twist Twisting Angle is 0° to 90°

O Bend + Twist

Linear + Twist

Force to max twisting: 0.1 N

Ondule Joint Constraints Individual Behavior Linear Only Twist Only Bend Only Compound Behaviors Linear + Twist Twisting angle is 0° to 90° Force to max twisting: 0.1 N

Bend + Twist

4Х

Convert to spring	3	Change
Generated Ondule Units:		
Ondule Spring Cus	tomizati	on
O Basic stiffness contro	• • A	dvanced spring
Least stiff		
Wire Thinckness 2.9 m	m 1.6	
Tum Gap: 6.8	2.4	•
Ondule Joint Co	onstraints	5
Individual Behavior		
Linear Only		
O Twist Only		
O Bend Only	Max co	mpression: 0.6
Compound Behaviors	Max ext	ension: 0.6 m
O Linear + Twist	Max loa	d: U.4 N k
O Bend + Twist		n.
Include decorat	ive sprin	g layer

Ondulé Applications

Jack-in-the-box

~ ~

Freeform –

Twist+Linear

Tangible Prop for Storytelling

Storytelling Authoring Interface

Circuitry

3D-Printed Prop

Future Work

Geometry Constraints

Spring Robustness

Simulation

Summary

A new approach to allow novices to convert a static 3D shape into a deformable object with embedded 3D-printed springs and joints.

Conducted mechanical experiments Proposed a set of deformation techniques using springs and joints Developed a design tool Built a set of example applications supported by Ondulé

Acknowledgment

William F Kuykendall / Joshua Land / Mark Fuge / Ruofei Du /Sophie Tian Dhruv Jain / Hanzi "Lotus" Zhang / Jessica Chin / Xuhai Xu (Orson) / Qisheng Li

IS1422106

Ondulé: Designing and Controlling 3D Printable Springs

Liang He

Michelle Lin

Ravi Konjeti

Jon E. Froehlich

Thank you! Questions?