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Problem: there is no
comprehensive information on
“the degree to which sidewalks
are accessible” in cities.

- National Council on Disability, 2007



Traditional methods
for gathering this
information are
time-consuming,
laborious, and
expensive.

https://sdotblog.seattle.gov/2017/08/28/seattle-sidewalk-survey-update/



Some automated methods
have been attempted...
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Some automated methods
have been attempted...

27% recall
for missing curb ramps

Jin Sun and David W. Jacobs. 2017. Seeing What is Not There:
Learning Context to Determine Where Objects are Missing. In 2017
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Some automated methods
have been attempted...

however these have had
moderate performance,
and narrow focus.
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Crowdsourcing
tools offer better
performance, but
are still slow and
expensive.



https://docs.google.com/file/d/15GZsEpvJseW3nRPOevz3mA2YZUSLlN-A/preview

£5 4k :

labeled panoramas



r: - J" :‘j— i
- B = A —s N
— - . = {;}/_\,fi_ [

52 4k 135k

labeled panoramas curb ramps



N el

52 4k 135k 1

labeled panoramas curb ramps missing curb ramps



i 1\
& EEF A

52 4k 135k 20.0k

labeled panoramas curb ramps missing curb ramps  obstructions




i

o ¢ v

52 4k 135k 20.0k

labeled panoramas curb ramps missing curb ramps  obstructions surface problems



Our Goal

Develop a system to automatically
detect different types of sidewalk
problems using streetscape imagery.

This system should be accurate, and
generalizable to any city.



Two Automated Tasks

Validation Labeling

Is this an obstruction? What problems are in this pano?



Two Automated Tasks

Is this an
obstruction?



Two Automated Tasks

Validation
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obstruction? missing curb ramp?
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Two Automated Tasks

Validation Labeling

Is this an obstacle? What problems are in this pano?
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How do we automate these tasks?

Start with 181k labeled problems from Project Sidewalk dataset.
Compute 3 types of features for each human-placed label.

Train two different neural networks, one for validation, one for labeling.
Use a sliding window to label panoramas.

Evaluate on a researcher-created ground-truth test dataset.

O HENEEES



3 types of features

image features positional features geographic features



3 types of features

image features positional features geographic features

42 meters

224 px
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3 types of features

image features positional features geographic features

block length 98m

distance to intersection

3.8m / 3.9% of block

National Mall

Arlington



How do we automate these tasks?

Start with 181k labeled problems from Project Sidewalk dataset.
Compute 3 types of features for each human-placed label.

Train two different neural networks, one for validation, one for labeling.
Use a sliding window to label panoramas.

Evaluate on a researcher-created ground-truth test dataset.
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Neural Network Architecture
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How do we automate these tasks?

Start with 181k labeled problems from Project Sidewalk dataset.
Compute 3 types of features for each human-placed label.

Train two different neural networks, one for validation, one for labeling.
Use a sliding window to label panoramas.

Evaluate on a researcher-created ground-truth test dataset.
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Sliding Window
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How do we automate these tasks?

Start with 181k labeled problems from Project Sidewalk dataset.
Compute 3 types of features for each human-placed label.

Train two different neural networks, one for validation, one for labeling.
Use a sliding window to label panoramas.

Evaluate on a researcher-created ground-truth test dataset.
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Percent Precision and Recall

Validation Performance
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Validation Errors - False Positives
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Comparison with Automated Systems

[ Tohme [1] Our Model Change
precision | 26% 33.7% +30%
Fully Automated < Curb Ramp
Sun et al. [2] Our Model Change
precision | not reported 12.0% N/A
Missing Ramp
L recall | 27% 58.6% +117%

[1] Kotaro Hara, Jin Sun, Robert Moore, David Jacobs, and Jon Froehlich. 2014. Tohme. In Proceedings of the 27th annual ACM Symposium on User
interface software and technology - UIST '14.

2 Jin Sun and David W. Jacobs. 2017. Seeing What is Not There: Learning Context to Determine Where Objects are Missing. In 2017 IEEE Conference
[ ] on Computer Vision and Pattern Recognition (CVPR). IEEE, 1234-1242.



Comparison with Human Systems

/
Hara et al. [3] Our Model Change
Majority Vote of —
5 Crowdworkers precision | 37% 39% +5%
Overall
N recall | 46% 50% +99%

[3] Kotaro Hara, Vicki Le, and Jon Froehlich. 2013. Combining crowdsourcing and google street view to identify street-level accessibility problems. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI '13.
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Cross-City Generalizability
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Cross-City Generalizability

baseline | D.C. model

three experiments | D.C. + new city

new city only

new city, pretrained with D.C.
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Cross-City Generalizability

=

90.2% | 82.8% 89.9%

overall recall overall recall overallrecall

D.C.
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our vision is to

map the accessibility of
all sidewalks in the world



£ S Alfred P. Sloan

FOUNDATION




£ S Alfred P. Sloan
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and thanks...

Esther Jang, Anthony Li, Aileen Zeng,
Kdrtis Heimerl, and Jon Froehlich




Thank You. Questions?



Possibilities to include (that | haven't already)

How do we generate null-crops?

Differences between the sliding-window training set and the centered-crop training
set.



Validation Errors - False Negatives

curb ramp

41%

bad delineation




Validation Errors - False Negatives
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Precision Recall
Img. + Img. +
Image Posgition il Image Posgition il
Overall 80.3 79.5 JON 79.6 80.0 80.1
Curb Ramp 81.5 80.1 79.77 | 90.7 03.2 93.6
Missing Ramp | 80.2 80.6 | 50.7 51.8
Obstruction 84.9 84.9 85.4 | 73.0 71.9 69.8
Sfc Problem 79.3 73.5 | 48.5 50.8 56.7
Null 75.6 79.3 | 894




= correct prediction O = ground truth label :_.=incorrect prediction 3 2= missed label

(a) Perfect Performance
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Recall (%)
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3 types of features

image features - describe appearance of object
geographic features

positional features



3 types of features

image features - describe appearance of object
geographic features - where is the object within a panorama?

positional features



3 types of features

image features - describe appearance of object
geographic features - where is the object within a panorama?

positional features - where is the panorama within the city?
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